Evaluate
\frac{97}{7}\approx 13.857142857
Factor
\frac{97}{7} = 13\frac{6}{7} = 13.857142857142858
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)388}\\\end{array}
Use the 1^{st} digit 3 from dividend 388
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)388}\\\end{array}
Since 3 is less than 28, use the next digit 8 from dividend 388 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)388}\\\end{array}
Use the 2^{nd} digit 8 from dividend 388
\begin{array}{l}\phantom{28)}01\phantom{4}\\28\overline{)388}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}10\\\end{array}
Find closest multiple of 28 to 38. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 38 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{28)}01\phantom{5}\\28\overline{)388}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}108\\\end{array}
Use the 3^{rd} digit 8 from dividend 388
\begin{array}{l}\phantom{28)}013\phantom{6}\\28\overline{)388}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}108\\\phantom{28)}\underline{\phantom{9}84\phantom{}}\\\phantom{28)9}24\\\end{array}
Find closest multiple of 28 to 108. We see that 3 \times 28 = 84 is the nearest. Now subtract 84 from 108 to get reminder 24. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }24
Since 24 is less than 28, stop the division. The reminder is 24. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}