Evaluate
\frac{193}{53}\approx 3.641509434
Factor
\frac{193}{53} = 3\frac{34}{53} = 3.641509433962264
Share
Copied to clipboard
\begin{array}{l}\phantom{106)}\phantom{1}\\106\overline{)386}\\\end{array}
Use the 1^{st} digit 3 from dividend 386
\begin{array}{l}\phantom{106)}0\phantom{2}\\106\overline{)386}\\\end{array}
Since 3 is less than 106, use the next digit 8 from dividend 386 and add 0 to the quotient
\begin{array}{l}\phantom{106)}0\phantom{3}\\106\overline{)386}\\\end{array}
Use the 2^{nd} digit 8 from dividend 386
\begin{array}{l}\phantom{106)}00\phantom{4}\\106\overline{)386}\\\end{array}
Since 38 is less than 106, use the next digit 6 from dividend 386 and add 0 to the quotient
\begin{array}{l}\phantom{106)}00\phantom{5}\\106\overline{)386}\\\end{array}
Use the 3^{rd} digit 6 from dividend 386
\begin{array}{l}\phantom{106)}003\phantom{6}\\106\overline{)386}\\\phantom{106)}\underline{\phantom{}318\phantom{}}\\\phantom{106)9}68\\\end{array}
Find closest multiple of 106 to 386. We see that 3 \times 106 = 318 is the nearest. Now subtract 318 from 386 to get reminder 68. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }68
Since 68 is less than 106, stop the division. The reminder is 68. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}