Evaluate
\frac{193}{37}\approx 5.216216216
Factor
\frac{193}{37} = 5\frac{8}{37} = 5.216216216216216
Share
Copied to clipboard
\begin{array}{l}\phantom{74)}\phantom{1}\\74\overline{)386}\\\end{array}
Use the 1^{st} digit 3 from dividend 386
\begin{array}{l}\phantom{74)}0\phantom{2}\\74\overline{)386}\\\end{array}
Since 3 is less than 74, use the next digit 8 from dividend 386 and add 0 to the quotient
\begin{array}{l}\phantom{74)}0\phantom{3}\\74\overline{)386}\\\end{array}
Use the 2^{nd} digit 8 from dividend 386
\begin{array}{l}\phantom{74)}00\phantom{4}\\74\overline{)386}\\\end{array}
Since 38 is less than 74, use the next digit 6 from dividend 386 and add 0 to the quotient
\begin{array}{l}\phantom{74)}00\phantom{5}\\74\overline{)386}\\\end{array}
Use the 3^{rd} digit 6 from dividend 386
\begin{array}{l}\phantom{74)}005\phantom{6}\\74\overline{)386}\\\phantom{74)}\underline{\phantom{}370\phantom{}}\\\phantom{74)9}16\\\end{array}
Find closest multiple of 74 to 386. We see that 5 \times 74 = 370 is the nearest. Now subtract 370 from 386 to get reminder 16. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }16
Since 16 is less than 74, stop the division. The reminder is 16. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}