Evaluate
\frac{192}{5}=38.4
Factor
\frac{2 ^ {6} \cdot 3}{5} = 38\frac{2}{5} = 38.4
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)384}\\\end{array}
Use the 1^{st} digit 3 from dividend 384
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)384}\\\end{array}
Since 3 is less than 10, use the next digit 8 from dividend 384 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)384}\\\end{array}
Use the 2^{nd} digit 8 from dividend 384
\begin{array}{l}\phantom{10)}03\phantom{4}\\10\overline{)384}\\\phantom{10)}\underline{\phantom{}30\phantom{9}}\\\phantom{10)9}8\\\end{array}
Find closest multiple of 10 to 38. We see that 3 \times 10 = 30 is the nearest. Now subtract 30 from 38 to get reminder 8. Add 3 to quotient.
\begin{array}{l}\phantom{10)}03\phantom{5}\\10\overline{)384}\\\phantom{10)}\underline{\phantom{}30\phantom{9}}\\\phantom{10)9}84\\\end{array}
Use the 3^{rd} digit 4 from dividend 384
\begin{array}{l}\phantom{10)}038\phantom{6}\\10\overline{)384}\\\phantom{10)}\underline{\phantom{}30\phantom{9}}\\\phantom{10)9}84\\\phantom{10)}\underline{\phantom{9}80\phantom{}}\\\phantom{10)99}4\\\end{array}
Find closest multiple of 10 to 84. We see that 8 \times 10 = 80 is the nearest. Now subtract 80 from 84 to get reminder 4. Add 8 to quotient.
\text{Quotient: }38 \text{Reminder: }4
Since 4 is less than 10, stop the division. The reminder is 4. The topmost line 038 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 38.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}