Evaluate
\frac{191}{12}\approx 15.916666667
Factor
\frac{191}{2 ^ {2} \cdot 3} = 15\frac{11}{12} = 15.916666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)382}\\\end{array}
Use the 1^{st} digit 3 from dividend 382
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)382}\\\end{array}
Since 3 is less than 24, use the next digit 8 from dividend 382 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)382}\\\end{array}
Use the 2^{nd} digit 8 from dividend 382
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)382}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}14\\\end{array}
Find closest multiple of 24 to 38. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 38 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{24)}01\phantom{5}\\24\overline{)382}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}142\\\end{array}
Use the 3^{rd} digit 2 from dividend 382
\begin{array}{l}\phantom{24)}015\phantom{6}\\24\overline{)382}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}142\\\phantom{24)}\underline{\phantom{}120\phantom{}}\\\phantom{24)9}22\\\end{array}
Find closest multiple of 24 to 142. We see that 5 \times 24 = 120 is the nearest. Now subtract 120 from 142 to get reminder 22. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }22
Since 22 is less than 24, stop the division. The reminder is 22. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}