Evaluate
\frac{38}{11}\approx 3.454545455
Factor
\frac{2 \cdot 19}{11} = 3\frac{5}{11} = 3.4545454545454546
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)38}\\\end{array}
Use the 1^{st} digit 3 from dividend 38
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)38}\\\end{array}
Since 3 is less than 11, use the next digit 8 from dividend 38 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)38}\\\end{array}
Use the 2^{nd} digit 8 from dividend 38
\begin{array}{l}\phantom{11)}03\phantom{4}\\11\overline{)38}\\\phantom{11)}\underline{\phantom{}33\phantom{}}\\\phantom{11)9}5\\\end{array}
Find closest multiple of 11 to 38. We see that 3 \times 11 = 33 is the nearest. Now subtract 33 from 38 to get reminder 5. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }5
Since 5 is less than 11, stop the division. The reminder is 5. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}