Evaluate
\frac{379663}{35}\approx 10847.514285714
Factor
\frac{379663}{5 \cdot 7} = 10847\frac{18}{35} = 10847.514285714286
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)379663}\\\end{array}
Use the 1^{st} digit 3 from dividend 379663
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)379663}\\\end{array}
Since 3 is less than 35, use the next digit 7 from dividend 379663 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)379663}\\\end{array}
Use the 2^{nd} digit 7 from dividend 379663
\begin{array}{l}\phantom{35)}01\phantom{4}\\35\overline{)379663}\\\phantom{35)}\underline{\phantom{}35\phantom{9999}}\\\phantom{35)9}2\\\end{array}
Find closest multiple of 35 to 37. We see that 1 \times 35 = 35 is the nearest. Now subtract 35 from 37 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{35)}01\phantom{5}\\35\overline{)379663}\\\phantom{35)}\underline{\phantom{}35\phantom{9999}}\\\phantom{35)9}29\\\end{array}
Use the 3^{rd} digit 9 from dividend 379663
\begin{array}{l}\phantom{35)}010\phantom{6}\\35\overline{)379663}\\\phantom{35)}\underline{\phantom{}35\phantom{9999}}\\\phantom{35)9}29\\\end{array}
Since 29 is less than 35, use the next digit 6 from dividend 379663 and add 0 to the quotient
\begin{array}{l}\phantom{35)}010\phantom{7}\\35\overline{)379663}\\\phantom{35)}\underline{\phantom{}35\phantom{9999}}\\\phantom{35)9}296\\\end{array}
Use the 4^{th} digit 6 from dividend 379663
\begin{array}{l}\phantom{35)}0108\phantom{8}\\35\overline{)379663}\\\phantom{35)}\underline{\phantom{}35\phantom{9999}}\\\phantom{35)9}296\\\phantom{35)}\underline{\phantom{9}280\phantom{99}}\\\phantom{35)99}16\\\end{array}
Find closest multiple of 35 to 296. We see that 8 \times 35 = 280 is the nearest. Now subtract 280 from 296 to get reminder 16. Add 8 to quotient.
\begin{array}{l}\phantom{35)}0108\phantom{9}\\35\overline{)379663}\\\phantom{35)}\underline{\phantom{}35\phantom{9999}}\\\phantom{35)9}296\\\phantom{35)}\underline{\phantom{9}280\phantom{99}}\\\phantom{35)99}166\\\end{array}
Use the 5^{th} digit 6 from dividend 379663
\begin{array}{l}\phantom{35)}01084\phantom{10}\\35\overline{)379663}\\\phantom{35)}\underline{\phantom{}35\phantom{9999}}\\\phantom{35)9}296\\\phantom{35)}\underline{\phantom{9}280\phantom{99}}\\\phantom{35)99}166\\\phantom{35)}\underline{\phantom{99}140\phantom{9}}\\\phantom{35)999}26\\\end{array}
Find closest multiple of 35 to 166. We see that 4 \times 35 = 140 is the nearest. Now subtract 140 from 166 to get reminder 26. Add 4 to quotient.
\begin{array}{l}\phantom{35)}01084\phantom{11}\\35\overline{)379663}\\\phantom{35)}\underline{\phantom{}35\phantom{9999}}\\\phantom{35)9}296\\\phantom{35)}\underline{\phantom{9}280\phantom{99}}\\\phantom{35)99}166\\\phantom{35)}\underline{\phantom{99}140\phantom{9}}\\\phantom{35)999}263\\\end{array}
Use the 6^{th} digit 3 from dividend 379663
\begin{array}{l}\phantom{35)}010847\phantom{12}\\35\overline{)379663}\\\phantom{35)}\underline{\phantom{}35\phantom{9999}}\\\phantom{35)9}296\\\phantom{35)}\underline{\phantom{9}280\phantom{99}}\\\phantom{35)99}166\\\phantom{35)}\underline{\phantom{99}140\phantom{9}}\\\phantom{35)999}263\\\phantom{35)}\underline{\phantom{999}245\phantom{}}\\\phantom{35)9999}18\\\end{array}
Find closest multiple of 35 to 263. We see that 7 \times 35 = 245 is the nearest. Now subtract 245 from 263 to get reminder 18. Add 7 to quotient.
\text{Quotient: }10847 \text{Reminder: }18
Since 18 is less than 35, stop the division. The reminder is 18. The topmost line 010847 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 10847.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}