Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3782x^{2}+165735x+91000000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-165735±\sqrt{165735^{2}-4\times 3782\times 91000000}}{2\times 3782}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3782 for a, 165735 for b, and 91000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-165735±\sqrt{27468090225-4\times 3782\times 91000000}}{2\times 3782}
Square 165735.
x=\frac{-165735±\sqrt{27468090225-15128\times 91000000}}{2\times 3782}
Multiply -4 times 3782.
x=\frac{-165735±\sqrt{27468090225-1376648000000}}{2\times 3782}
Multiply -15128 times 91000000.
x=\frac{-165735±\sqrt{-1349179909775}}{2\times 3782}
Add 27468090225 to -1376648000000.
x=\frac{-165735±5\sqrt{53967196391}i}{2\times 3782}
Take the square root of -1349179909775.
x=\frac{-165735±5\sqrt{53967196391}i}{7564}
Multiply 2 times 3782.
x=\frac{-165735+5\sqrt{53967196391}i}{7564}
Now solve the equation x=\frac{-165735±5\sqrt{53967196391}i}{7564} when ± is plus. Add -165735 to 5i\sqrt{53967196391}.
x=\frac{-5\sqrt{53967196391}i-165735}{7564}
Now solve the equation x=\frac{-165735±5\sqrt{53967196391}i}{7564} when ± is minus. Subtract 5i\sqrt{53967196391} from -165735.
x=\frac{-165735+5\sqrt{53967196391}i}{7564} x=\frac{-5\sqrt{53967196391}i-165735}{7564}
The equation is now solved.
3782x^{2}+165735x+91000000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3782x^{2}+165735x+91000000-91000000=-91000000
Subtract 91000000 from both sides of the equation.
3782x^{2}+165735x=-91000000
Subtracting 91000000 from itself leaves 0.
\frac{3782x^{2}+165735x}{3782}=-\frac{91000000}{3782}
Divide both sides by 3782.
x^{2}+\frac{165735}{3782}x=-\frac{91000000}{3782}
Dividing by 3782 undoes the multiplication by 3782.
x^{2}+\frac{165735}{3782}x=-\frac{45500000}{1891}
Reduce the fraction \frac{-91000000}{3782} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{165735}{3782}x+\left(\frac{165735}{7564}\right)^{2}=-\frac{45500000}{1891}+\left(\frac{165735}{7564}\right)^{2}
Divide \frac{165735}{3782}, the coefficient of the x term, by 2 to get \frac{165735}{7564}. Then add the square of \frac{165735}{7564} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{165735}{3782}x+\frac{27468090225}{57214096}=-\frac{45500000}{1891}+\frac{27468090225}{57214096}
Square \frac{165735}{7564} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{165735}{3782}x+\frac{27468090225}{57214096}=-\frac{1349179909775}{57214096}
Add -\frac{45500000}{1891} to \frac{27468090225}{57214096} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{165735}{7564}\right)^{2}=-\frac{1349179909775}{57214096}
Factor x^{2}+\frac{165735}{3782}x+\frac{27468090225}{57214096}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{165735}{7564}\right)^{2}}=\sqrt{-\frac{1349179909775}{57214096}}
Take the square root of both sides of the equation.
x+\frac{165735}{7564}=\frac{5\sqrt{53967196391}i}{7564} x+\frac{165735}{7564}=-\frac{5\sqrt{53967196391}i}{7564}
Simplify.
x=\frac{-165735+5\sqrt{53967196391}i}{7564} x=\frac{-5\sqrt{53967196391}i-165735}{7564}
Subtract \frac{165735}{7564} from both sides of the equation.