Evaluate
\frac{377}{74}\approx 5.094594595
Factor
\frac{13 \cdot 29}{2 \cdot 37} = 5\frac{7}{74} = 5.094594594594595
Share
Copied to clipboard
\begin{array}{l}\phantom{74)}\phantom{1}\\74\overline{)377}\\\end{array}
Use the 1^{st} digit 3 from dividend 377
\begin{array}{l}\phantom{74)}0\phantom{2}\\74\overline{)377}\\\end{array}
Since 3 is less than 74, use the next digit 7 from dividend 377 and add 0 to the quotient
\begin{array}{l}\phantom{74)}0\phantom{3}\\74\overline{)377}\\\end{array}
Use the 2^{nd} digit 7 from dividend 377
\begin{array}{l}\phantom{74)}00\phantom{4}\\74\overline{)377}\\\end{array}
Since 37 is less than 74, use the next digit 7 from dividend 377 and add 0 to the quotient
\begin{array}{l}\phantom{74)}00\phantom{5}\\74\overline{)377}\\\end{array}
Use the 3^{rd} digit 7 from dividend 377
\begin{array}{l}\phantom{74)}005\phantom{6}\\74\overline{)377}\\\phantom{74)}\underline{\phantom{}370\phantom{}}\\\phantom{74)99}7\\\end{array}
Find closest multiple of 74 to 377. We see that 5 \times 74 = 370 is the nearest. Now subtract 370 from 377 to get reminder 7. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }7
Since 7 is less than 74, stop the division. The reminder is 7. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}