Solve for y
y=\frac{\sqrt{5559}i}{750}+\frac{7}{250}\approx 0.028+0.099411602i
y=-\frac{\sqrt{5559}i}{750}+\frac{7}{250}\approx 0.028-0.099411602i
Share
Copied to clipboard
375y^{2}-21y+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 375\times 4}}{2\times 375}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 375 for a, -21 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-21\right)±\sqrt{441-4\times 375\times 4}}{2\times 375}
Square -21.
y=\frac{-\left(-21\right)±\sqrt{441-1500\times 4}}{2\times 375}
Multiply -4 times 375.
y=\frac{-\left(-21\right)±\sqrt{441-6000}}{2\times 375}
Multiply -1500 times 4.
y=\frac{-\left(-21\right)±\sqrt{-5559}}{2\times 375}
Add 441 to -6000.
y=\frac{-\left(-21\right)±\sqrt{5559}i}{2\times 375}
Take the square root of -5559.
y=\frac{21±\sqrt{5559}i}{2\times 375}
The opposite of -21 is 21.
y=\frac{21±\sqrt{5559}i}{750}
Multiply 2 times 375.
y=\frac{21+\sqrt{5559}i}{750}
Now solve the equation y=\frac{21±\sqrt{5559}i}{750} when ± is plus. Add 21 to i\sqrt{5559}.
y=\frac{\sqrt{5559}i}{750}+\frac{7}{250}
Divide 21+i\sqrt{5559} by 750.
y=\frac{-\sqrt{5559}i+21}{750}
Now solve the equation y=\frac{21±\sqrt{5559}i}{750} when ± is minus. Subtract i\sqrt{5559} from 21.
y=-\frac{\sqrt{5559}i}{750}+\frac{7}{250}
Divide 21-i\sqrt{5559} by 750.
y=\frac{\sqrt{5559}i}{750}+\frac{7}{250} y=-\frac{\sqrt{5559}i}{750}+\frac{7}{250}
The equation is now solved.
375y^{2}-21y+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
375y^{2}-21y+4-4=-4
Subtract 4 from both sides of the equation.
375y^{2}-21y=-4
Subtracting 4 from itself leaves 0.
\frac{375y^{2}-21y}{375}=-\frac{4}{375}
Divide both sides by 375.
y^{2}+\left(-\frac{21}{375}\right)y=-\frac{4}{375}
Dividing by 375 undoes the multiplication by 375.
y^{2}-\frac{7}{125}y=-\frac{4}{375}
Reduce the fraction \frac{-21}{375} to lowest terms by extracting and canceling out 3.
y^{2}-\frac{7}{125}y+\left(-\frac{7}{250}\right)^{2}=-\frac{4}{375}+\left(-\frac{7}{250}\right)^{2}
Divide -\frac{7}{125}, the coefficient of the x term, by 2 to get -\frac{7}{250}. Then add the square of -\frac{7}{250} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{7}{125}y+\frac{49}{62500}=-\frac{4}{375}+\frac{49}{62500}
Square -\frac{7}{250} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{7}{125}y+\frac{49}{62500}=-\frac{1853}{187500}
Add -\frac{4}{375} to \frac{49}{62500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{7}{250}\right)^{2}=-\frac{1853}{187500}
Factor y^{2}-\frac{7}{125}y+\frac{49}{62500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{7}{250}\right)^{2}}=\sqrt{-\frac{1853}{187500}}
Take the square root of both sides of the equation.
y-\frac{7}{250}=\frac{\sqrt{5559}i}{750} y-\frac{7}{250}=-\frac{\sqrt{5559}i}{750}
Simplify.
y=\frac{\sqrt{5559}i}{750}+\frac{7}{250} y=-\frac{\sqrt{5559}i}{750}+\frac{7}{250}
Add \frac{7}{250} to both sides of the equation.
x ^ 2 -\frac{7}{125}x +\frac{4}{375} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 375
r + s = \frac{7}{125} rs = \frac{4}{375}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{7}{250} - u s = \frac{7}{250} + u
Two numbers r and s sum up to \frac{7}{125} exactly when the average of the two numbers is \frac{1}{2}*\frac{7}{125} = \frac{7}{250}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{7}{250} - u) (\frac{7}{250} + u) = \frac{4}{375}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{4}{375}
\frac{49}{62500} - u^2 = \frac{4}{375}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{4}{375}-\frac{49}{62500} = \frac{1853}{187500}
Simplify the expression by subtracting \frac{49}{62500} on both sides
u^2 = -\frac{1853}{187500} u = \pm\sqrt{-\frac{1853}{187500}} = \pm \frac{\sqrt{1853}}{\sqrt{187500}}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{7}{250} - \frac{\sqrt{1853}}{\sqrt{187500}}i = 0.028 - 0.099i s = \frac{7}{250} + \frac{\sqrt{1853}}{\sqrt{187500}}i = 0.028 + 0.099i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}