Evaluate
\frac{125}{7}\approx 17.857142857
Factor
\frac{5 ^ {3}}{7} = 17\frac{6}{7} = 17.857142857142858
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)375}\\\end{array}
Use the 1^{st} digit 3 from dividend 375
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)375}\\\end{array}
Since 3 is less than 21, use the next digit 7 from dividend 375 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)375}\\\end{array}
Use the 2^{nd} digit 7 from dividend 375
\begin{array}{l}\phantom{21)}01\phantom{4}\\21\overline{)375}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)}16\\\end{array}
Find closest multiple of 21 to 37. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 37 to get reminder 16. Add 1 to quotient.
\begin{array}{l}\phantom{21)}01\phantom{5}\\21\overline{)375}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)}165\\\end{array}
Use the 3^{rd} digit 5 from dividend 375
\begin{array}{l}\phantom{21)}017\phantom{6}\\21\overline{)375}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)}165\\\phantom{21)}\underline{\phantom{}147\phantom{}}\\\phantom{21)9}18\\\end{array}
Find closest multiple of 21 to 165. We see that 7 \times 21 = 147 is the nearest. Now subtract 147 from 165 to get reminder 18. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }18
Since 18 is less than 21, stop the division. The reminder is 18. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}