Evaluate
\frac{371}{60}\approx 6.183333333
Factor
\frac{7 \cdot 53}{2 ^ {2} \cdot 3 \cdot 5} = 6\frac{11}{60} = 6.183333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)371}\\\end{array}
Use the 1^{st} digit 3 from dividend 371
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)371}\\\end{array}
Since 3 is less than 60, use the next digit 7 from dividend 371 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)371}\\\end{array}
Use the 2^{nd} digit 7 from dividend 371
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)371}\\\end{array}
Since 37 is less than 60, use the next digit 1 from dividend 371 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)371}\\\end{array}
Use the 3^{rd} digit 1 from dividend 371
\begin{array}{l}\phantom{60)}006\phantom{6}\\60\overline{)371}\\\phantom{60)}\underline{\phantom{}360\phantom{}}\\\phantom{60)9}11\\\end{array}
Find closest multiple of 60 to 371. We see that 6 \times 60 = 360 is the nearest. Now subtract 360 from 371 to get reminder 11. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }11
Since 11 is less than 60, stop the division. The reminder is 11. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}