Solve for x
x=\frac{125\sqrt{548064409}-4143375}{1891}\approx -643.589668887
x=\frac{-125\sqrt{548064409}-4143375}{1891}\approx -3738.615513556
Graph
Share
Copied to clipboard
37.82x^{2}+165735x+91\times 1000000=0
Calculate 10 to the power of 6 and get 1000000.
37.82x^{2}+165735x+91000000=0
Multiply 91 and 1000000 to get 91000000.
x=\frac{-165735±\sqrt{165735^{2}-4\times 37.82\times 91000000}}{2\times 37.82}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 37.82 for a, 165735 for b, and 91000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-165735±\sqrt{27468090225-4\times 37.82\times 91000000}}{2\times 37.82}
Square 165735.
x=\frac{-165735±\sqrt{27468090225-151.28\times 91000000}}{2\times 37.82}
Multiply -4 times 37.82.
x=\frac{-165735±\sqrt{27468090225-13766480000}}{2\times 37.82}
Multiply -151.28 times 91000000.
x=\frac{-165735±\sqrt{13701610225}}{2\times 37.82}
Add 27468090225 to -13766480000.
x=\frac{-165735±5\sqrt{548064409}}{2\times 37.82}
Take the square root of 13701610225.
x=\frac{-165735±5\sqrt{548064409}}{75.64}
Multiply 2 times 37.82.
x=\frac{5\sqrt{548064409}-165735}{75.64}
Now solve the equation x=\frac{-165735±5\sqrt{548064409}}{75.64} when ± is plus. Add -165735 to 5\sqrt{548064409}.
x=\frac{125\sqrt{548064409}-4143375}{1891}
Divide -165735+5\sqrt{548064409} by 75.64 by multiplying -165735+5\sqrt{548064409} by the reciprocal of 75.64.
x=\frac{-5\sqrt{548064409}-165735}{75.64}
Now solve the equation x=\frac{-165735±5\sqrt{548064409}}{75.64} when ± is minus. Subtract 5\sqrt{548064409} from -165735.
x=\frac{-125\sqrt{548064409}-4143375}{1891}
Divide -165735-5\sqrt{548064409} by 75.64 by multiplying -165735-5\sqrt{548064409} by the reciprocal of 75.64.
x=\frac{125\sqrt{548064409}-4143375}{1891} x=\frac{-125\sqrt{548064409}-4143375}{1891}
The equation is now solved.
37.82x^{2}+165735x+91\times 1000000=0
Calculate 10 to the power of 6 and get 1000000.
37.82x^{2}+165735x+91000000=0
Multiply 91 and 1000000 to get 91000000.
37.82x^{2}+165735x=-91000000
Subtract 91000000 from both sides. Anything subtracted from zero gives its negation.
\frac{37.82x^{2}+165735x}{37.82}=-\frac{91000000}{37.82}
Divide both sides of the equation by 37.82, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{165735}{37.82}x=-\frac{91000000}{37.82}
Dividing by 37.82 undoes the multiplication by 37.82.
x^{2}+\frac{8286750}{1891}x=-\frac{91000000}{37.82}
Divide 165735 by 37.82 by multiplying 165735 by the reciprocal of 37.82.
x^{2}+\frac{8286750}{1891}x=-\frac{4550000000}{1891}
Divide -91000000 by 37.82 by multiplying -91000000 by the reciprocal of 37.82.
x^{2}+\frac{8286750}{1891}x+\frac{4143375}{1891}^{2}=-\frac{4550000000}{1891}+\frac{4143375}{1891}^{2}
Divide \frac{8286750}{1891}, the coefficient of the x term, by 2 to get \frac{4143375}{1891}. Then add the square of \frac{4143375}{1891} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8286750}{1891}x+\frac{17167556390625}{3575881}=-\frac{4550000000}{1891}+\frac{17167556390625}{3575881}
Square \frac{4143375}{1891} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8286750}{1891}x+\frac{17167556390625}{3575881}=\frac{8563506390625}{3575881}
Add -\frac{4550000000}{1891} to \frac{17167556390625}{3575881} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4143375}{1891}\right)^{2}=\frac{8563506390625}{3575881}
Factor x^{2}+\frac{8286750}{1891}x+\frac{17167556390625}{3575881}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4143375}{1891}\right)^{2}}=\sqrt{\frac{8563506390625}{3575881}}
Take the square root of both sides of the equation.
x+\frac{4143375}{1891}=\frac{125\sqrt{548064409}}{1891} x+\frac{4143375}{1891}=-\frac{125\sqrt{548064409}}{1891}
Simplify.
x=\frac{125\sqrt{548064409}-4143375}{1891} x=\frac{-125\sqrt{548064409}-4143375}{1891}
Subtract \frac{4143375}{1891} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}