Solve for x
x = \frac{360}{7} = 51\frac{3}{7} \approx 51.428571429
x=0
Graph
Share
Copied to clipboard
36x-0.7x^{2}=0
Subtract 0.7x^{2} from both sides.
x\left(36-0.7x\right)=0
Factor out x.
x=0 x=\frac{360}{7}
To find equation solutions, solve x=0 and 36-\frac{7x}{10}=0.
36x-0.7x^{2}=0
Subtract 0.7x^{2} from both sides.
-0.7x^{2}+36x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-36±\sqrt{36^{2}}}{2\left(-0.7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.7 for a, 36 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±36}{2\left(-0.7\right)}
Take the square root of 36^{2}.
x=\frac{-36±36}{-1.4}
Multiply 2 times -0.7.
x=\frac{0}{-1.4}
Now solve the equation x=\frac{-36±36}{-1.4} when ± is plus. Add -36 to 36.
x=0
Divide 0 by -1.4 by multiplying 0 by the reciprocal of -1.4.
x=-\frac{72}{-1.4}
Now solve the equation x=\frac{-36±36}{-1.4} when ± is minus. Subtract 36 from -36.
x=\frac{360}{7}
Divide -72 by -1.4 by multiplying -72 by the reciprocal of -1.4.
x=0 x=\frac{360}{7}
The equation is now solved.
36x-0.7x^{2}=0
Subtract 0.7x^{2} from both sides.
-0.7x^{2}+36x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.7x^{2}+36x}{-0.7}=\frac{0}{-0.7}
Divide both sides of the equation by -0.7, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{36}{-0.7}x=\frac{0}{-0.7}
Dividing by -0.7 undoes the multiplication by -0.7.
x^{2}-\frac{360}{7}x=\frac{0}{-0.7}
Divide 36 by -0.7 by multiplying 36 by the reciprocal of -0.7.
x^{2}-\frac{360}{7}x=0
Divide 0 by -0.7 by multiplying 0 by the reciprocal of -0.7.
x^{2}-\frac{360}{7}x+\left(-\frac{180}{7}\right)^{2}=\left(-\frac{180}{7}\right)^{2}
Divide -\frac{360}{7}, the coefficient of the x term, by 2 to get -\frac{180}{7}. Then add the square of -\frac{180}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{360}{7}x+\frac{32400}{49}=\frac{32400}{49}
Square -\frac{180}{7} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{180}{7}\right)^{2}=\frac{32400}{49}
Factor x^{2}-\frac{360}{7}x+\frac{32400}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{180}{7}\right)^{2}}=\sqrt{\frac{32400}{49}}
Take the square root of both sides of the equation.
x-\frac{180}{7}=\frac{180}{7} x-\frac{180}{7}=-\frac{180}{7}
Simplify.
x=\frac{360}{7} x=0
Add \frac{180}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}