Solve for x
x=-\frac{y}{6}+\frac{1}{12}
Solve for y
y=\frac{1}{2}-6x
Graph
Share
Copied to clipboard
36x-3=-6y
Subtract 6y from both sides. Anything subtracted from zero gives its negation.
36x=-6y+3
Add 3 to both sides.
36x=3-6y
The equation is in standard form.
\frac{36x}{36}=\frac{3-6y}{36}
Divide both sides by 36.
x=\frac{3-6y}{36}
Dividing by 36 undoes the multiplication by 36.
x=-\frac{y}{6}+\frac{1}{12}
Divide -6y+3 by 36.
6y-3=-36x
Subtract 36x from both sides. Anything subtracted from zero gives its negation.
6y=-36x+3
Add 3 to both sides.
6y=3-36x
The equation is in standard form.
\frac{6y}{6}=\frac{3-36x}{6}
Divide both sides by 6.
y=\frac{3-36x}{6}
Dividing by 6 undoes the multiplication by 6.
y=\frac{1}{2}-6x
Divide -36x+3 by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}