Solve for x
x=\frac{\sqrt{9481}-25}{738}\approx 0.098062909
x=\frac{-\sqrt{9481}-25}{738}\approx -0.165813586
Graph
Share
Copied to clipboard
369x^{2}+25x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{25^{2}-4\times 369\left(-6\right)}}{2\times 369}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 369 for a, 25 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\times 369\left(-6\right)}}{2\times 369}
Square 25.
x=\frac{-25±\sqrt{625-1476\left(-6\right)}}{2\times 369}
Multiply -4 times 369.
x=\frac{-25±\sqrt{625+8856}}{2\times 369}
Multiply -1476 times -6.
x=\frac{-25±\sqrt{9481}}{2\times 369}
Add 625 to 8856.
x=\frac{-25±\sqrt{9481}}{738}
Multiply 2 times 369.
x=\frac{\sqrt{9481}-25}{738}
Now solve the equation x=\frac{-25±\sqrt{9481}}{738} when ± is plus. Add -25 to \sqrt{9481}.
x=\frac{-\sqrt{9481}-25}{738}
Now solve the equation x=\frac{-25±\sqrt{9481}}{738} when ± is minus. Subtract \sqrt{9481} from -25.
x=\frac{\sqrt{9481}-25}{738} x=\frac{-\sqrt{9481}-25}{738}
The equation is now solved.
369x^{2}+25x-6=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
369x^{2}+25x-6-\left(-6\right)=-\left(-6\right)
Add 6 to both sides of the equation.
369x^{2}+25x=-\left(-6\right)
Subtracting -6 from itself leaves 0.
369x^{2}+25x=6
Subtract -6 from 0.
\frac{369x^{2}+25x}{369}=\frac{6}{369}
Divide both sides by 369.
x^{2}+\frac{25}{369}x=\frac{6}{369}
Dividing by 369 undoes the multiplication by 369.
x^{2}+\frac{25}{369}x=\frac{2}{123}
Reduce the fraction \frac{6}{369} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{25}{369}x+\left(\frac{25}{738}\right)^{2}=\frac{2}{123}+\left(\frac{25}{738}\right)^{2}
Divide \frac{25}{369}, the coefficient of the x term, by 2 to get \frac{25}{738}. Then add the square of \frac{25}{738} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{25}{369}x+\frac{625}{544644}=\frac{2}{123}+\frac{625}{544644}
Square \frac{25}{738} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{25}{369}x+\frac{625}{544644}=\frac{9481}{544644}
Add \frac{2}{123} to \frac{625}{544644} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{25}{738}\right)^{2}=\frac{9481}{544644}
Factor x^{2}+\frac{25}{369}x+\frac{625}{544644}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{738}\right)^{2}}=\sqrt{\frac{9481}{544644}}
Take the square root of both sides of the equation.
x+\frac{25}{738}=\frac{\sqrt{9481}}{738} x+\frac{25}{738}=-\frac{\sqrt{9481}}{738}
Simplify.
x=\frac{\sqrt{9481}-25}{738} x=\frac{-\sqrt{9481}-25}{738}
Subtract \frac{25}{738} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}