Evaluate
\frac{367}{74}\approx 4.959459459
Factor
\frac{367}{2 \cdot 37} = 4\frac{71}{74} = 4.95945945945946
Share
Copied to clipboard
\begin{array}{l}\phantom{74)}\phantom{1}\\74\overline{)367}\\\end{array}
Use the 1^{st} digit 3 from dividend 367
\begin{array}{l}\phantom{74)}0\phantom{2}\\74\overline{)367}\\\end{array}
Since 3 is less than 74, use the next digit 6 from dividend 367 and add 0 to the quotient
\begin{array}{l}\phantom{74)}0\phantom{3}\\74\overline{)367}\\\end{array}
Use the 2^{nd} digit 6 from dividend 367
\begin{array}{l}\phantom{74)}00\phantom{4}\\74\overline{)367}\\\end{array}
Since 36 is less than 74, use the next digit 7 from dividend 367 and add 0 to the quotient
\begin{array}{l}\phantom{74)}00\phantom{5}\\74\overline{)367}\\\end{array}
Use the 3^{rd} digit 7 from dividend 367
\begin{array}{l}\phantom{74)}004\phantom{6}\\74\overline{)367}\\\phantom{74)}\underline{\phantom{}296\phantom{}}\\\phantom{74)9}71\\\end{array}
Find closest multiple of 74 to 367. We see that 4 \times 74 = 296 is the nearest. Now subtract 296 from 367 to get reminder 71. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }71
Since 71 is less than 74, stop the division. The reminder is 71. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}