Solve for x
x=-\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889}\approx 0.016024774
Graph
Share
Copied to clipboard
\sqrt{4x}=59-3666x
Subtract 3666x from both sides of the equation.
\left(\sqrt{4x}\right)^{2}=\left(59-3666x\right)^{2}
Square both sides of the equation.
4x=\left(59-3666x\right)^{2}
Calculate \sqrt{4x} to the power of 2 and get 4x.
4x=3481-432588x+13439556x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(59-3666x\right)^{2}.
4x-3481=-432588x+13439556x^{2}
Subtract 3481 from both sides.
4x-3481+432588x=13439556x^{2}
Add 432588x to both sides.
432592x-3481=13439556x^{2}
Combine 4x and 432588x to get 432592x.
432592x-3481-13439556x^{2}=0
Subtract 13439556x^{2} from both sides.
-13439556x^{2}+432592x-3481=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-432592±\sqrt{432592^{2}-4\left(-13439556\right)\left(-3481\right)}}{2\left(-13439556\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -13439556 for a, 432592 for b, and -3481 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-432592±\sqrt{187135838464-4\left(-13439556\right)\left(-3481\right)}}{2\left(-13439556\right)}
Square 432592.
x=\frac{-432592±\sqrt{187135838464+53758224\left(-3481\right)}}{2\left(-13439556\right)}
Multiply -4 times -13439556.
x=\frac{-432592±\sqrt{187135838464-187132377744}}{2\left(-13439556\right)}
Multiply 53758224 times -3481.
x=\frac{-432592±\sqrt{3460720}}{2\left(-13439556\right)}
Add 187135838464 to -187132377744.
x=\frac{-432592±4\sqrt{216295}}{2\left(-13439556\right)}
Take the square root of 3460720.
x=\frac{-432592±4\sqrt{216295}}{-26879112}
Multiply 2 times -13439556.
x=\frac{4\sqrt{216295}-432592}{-26879112}
Now solve the equation x=\frac{-432592±4\sqrt{216295}}{-26879112} when ± is plus. Add -432592 to 4\sqrt{216295}.
x=-\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889}
Divide -432592+4\sqrt{216295} by -26879112.
x=\frac{-4\sqrt{216295}-432592}{-26879112}
Now solve the equation x=\frac{-432592±4\sqrt{216295}}{-26879112} when ± is minus. Subtract 4\sqrt{216295} from -432592.
x=\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889}
Divide -432592-4\sqrt{216295} by -26879112.
x=-\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889} x=\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889}
The equation is now solved.
3666\left(-\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889}\right)+\sqrt{4\left(-\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889}\right)}=59
Substitute -\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889} for x in the equation 3666x+\sqrt{4x}=59.
59=59
Simplify. The value x=-\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889} satisfies the equation.
3666\left(\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889}\right)+\sqrt{4\left(\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889}\right)}=59
Substitute \frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889} for x in the equation 3666x+\sqrt{4x}=59.
\frac{2}{1833}\times 216295^{\frac{1}{2}}+\frac{108149}{1833}=59
Simplify. The value x=\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889} does not satisfy the equation.
x=-\frac{\sqrt{216295}}{6719778}+\frac{54074}{3359889}
Equation \sqrt{4x}=59-3666x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}