Evaluate
\frac{73}{10}=7.3
Factor
\frac{73}{2 \cdot 5} = 7\frac{3}{10} = 7.3
Share
Copied to clipboard
\begin{array}{l}\phantom{500)}\phantom{1}\\500\overline{)3650}\\\end{array}
Use the 1^{st} digit 3 from dividend 3650
\begin{array}{l}\phantom{500)}0\phantom{2}\\500\overline{)3650}\\\end{array}
Since 3 is less than 500, use the next digit 6 from dividend 3650 and add 0 to the quotient
\begin{array}{l}\phantom{500)}0\phantom{3}\\500\overline{)3650}\\\end{array}
Use the 2^{nd} digit 6 from dividend 3650
\begin{array}{l}\phantom{500)}00\phantom{4}\\500\overline{)3650}\\\end{array}
Since 36 is less than 500, use the next digit 5 from dividend 3650 and add 0 to the quotient
\begin{array}{l}\phantom{500)}00\phantom{5}\\500\overline{)3650}\\\end{array}
Use the 3^{rd} digit 5 from dividend 3650
\begin{array}{l}\phantom{500)}000\phantom{6}\\500\overline{)3650}\\\end{array}
Since 365 is less than 500, use the next digit 0 from dividend 3650 and add 0 to the quotient
\begin{array}{l}\phantom{500)}000\phantom{7}\\500\overline{)3650}\\\end{array}
Use the 4^{th} digit 0 from dividend 3650
\begin{array}{l}\phantom{500)}0007\phantom{8}\\500\overline{)3650}\\\phantom{500)}\underline{\phantom{}3500\phantom{}}\\\phantom{500)9}150\\\end{array}
Find closest multiple of 500 to 3650. We see that 7 \times 500 = 3500 is the nearest. Now subtract 3500 from 3650 to get reminder 150. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }150
Since 150 is less than 500, stop the division. The reminder is 150. The topmost line 0007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}