Evaluate
\frac{365}{52}\approx 7.019230769
Factor
\frac{5 \cdot 73}{2 ^ {2} \cdot 13} = 7\frac{1}{52} = 7.019230769230769
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)365}\\\end{array}
Use the 1^{st} digit 3 from dividend 365
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)365}\\\end{array}
Since 3 is less than 52, use the next digit 6 from dividend 365 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)365}\\\end{array}
Use the 2^{nd} digit 6 from dividend 365
\begin{array}{l}\phantom{52)}00\phantom{4}\\52\overline{)365}\\\end{array}
Since 36 is less than 52, use the next digit 5 from dividend 365 and add 0 to the quotient
\begin{array}{l}\phantom{52)}00\phantom{5}\\52\overline{)365}\\\end{array}
Use the 3^{rd} digit 5 from dividend 365
\begin{array}{l}\phantom{52)}007\phantom{6}\\52\overline{)365}\\\phantom{52)}\underline{\phantom{}364\phantom{}}\\\phantom{52)99}1\\\end{array}
Find closest multiple of 52 to 365. We see that 7 \times 52 = 364 is the nearest. Now subtract 364 from 365 to get reminder 1. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }1
Since 1 is less than 52, stop the division. The reminder is 1. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}