Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

45\left(8x-x^{2}\right)
Factor out 45.
x\left(8-x\right)
Consider 8x-x^{2}. Factor out x.
45x\left(-x+8\right)
Rewrite the complete factored expression.
-45x^{2}+360x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-360±\sqrt{360^{2}}}{2\left(-45\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-360±360}{2\left(-45\right)}
Take the square root of 360^{2}.
x=\frac{-360±360}{-90}
Multiply 2 times -45.
x=\frac{0}{-90}
Now solve the equation x=\frac{-360±360}{-90} when ± is plus. Add -360 to 360.
x=0
Divide 0 by -90.
x=-\frac{720}{-90}
Now solve the equation x=\frac{-360±360}{-90} when ± is minus. Subtract 360 from -360.
x=8
Divide -720 by -90.
-45x^{2}+360x=-45x\left(x-8\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 8 for x_{2}.