Factor
20s\left(3s-4\right)\left(6s-5\right)
Evaluate
20s\left(3s-4\right)\left(6s-5\right)
Share
Copied to clipboard
20\left(18s^{3}-39s^{2}+20s\right)
Factor out 20.
s\left(18s^{2}-39s+20\right)
Consider 18s^{3}-39s^{2}+20s. Factor out s.
a+b=-39 ab=18\times 20=360
Consider 18s^{2}-39s+20. Factor the expression by grouping. First, the expression needs to be rewritten as 18s^{2}+as+bs+20. To find a and b, set up a system to be solved.
-1,-360 -2,-180 -3,-120 -4,-90 -5,-72 -6,-60 -8,-45 -9,-40 -10,-36 -12,-30 -15,-24 -18,-20
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 360.
-1-360=-361 -2-180=-182 -3-120=-123 -4-90=-94 -5-72=-77 -6-60=-66 -8-45=-53 -9-40=-49 -10-36=-46 -12-30=-42 -15-24=-39 -18-20=-38
Calculate the sum for each pair.
a=-24 b=-15
The solution is the pair that gives sum -39.
\left(18s^{2}-24s\right)+\left(-15s+20\right)
Rewrite 18s^{2}-39s+20 as \left(18s^{2}-24s\right)+\left(-15s+20\right).
6s\left(3s-4\right)-5\left(3s-4\right)
Factor out 6s in the first and -5 in the second group.
\left(3s-4\right)\left(6s-5\right)
Factor out common term 3s-4 by using distributive property.
20s\left(3s-4\right)\left(6s-5\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}