Evaluate
24
Factor
2^{3}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)360}\\\end{array}
Since 3 is less than 15, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{15)}02\phantom{4}\\15\overline{)360}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)9}6\\\end{array}
Find closest multiple of 15 to 36. We see that 2 \times 15 = 30 is the nearest. Now subtract 30 from 36 to get reminder 6. Add 2 to quotient.
\begin{array}{l}\phantom{15)}02\phantom{5}\\15\overline{)360}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)9}60\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{15)}024\phantom{6}\\15\overline{)360}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)9}60\\\phantom{15)}\underline{\phantom{9}60\phantom{}}\\\phantom{15)999}0\\\end{array}
Find closest multiple of 15 to 60. We see that 4 \times 15 = 60 is the nearest. Now subtract 60 from 60 to get reminder 0. Add 4 to quotient.
\text{Quotient: }24 \text{Reminder: }0
Since 0 is less than 15, stop the division. The reminder is 0. The topmost line 024 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}