Evaluate
\frac{360}{257}\approx 1.40077821
Factor
\frac{2 ^ {3} \cdot 3 ^ {2} \cdot 5}{257} = 1\frac{103}{257} = 1.4007782101167314
Share
Copied to clipboard
\begin{array}{l}\phantom{257)}\phantom{1}\\257\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{257)}0\phantom{2}\\257\overline{)360}\\\end{array}
Since 3 is less than 257, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{257)}0\phantom{3}\\257\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{257)}00\phantom{4}\\257\overline{)360}\\\end{array}
Since 36 is less than 257, use the next digit 0 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{257)}00\phantom{5}\\257\overline{)360}\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{257)}001\phantom{6}\\257\overline{)360}\\\phantom{257)}\underline{\phantom{}257\phantom{}}\\\phantom{257)}103\\\end{array}
Find closest multiple of 257 to 360. We see that 1 \times 257 = 257 is the nearest. Now subtract 257 from 360 to get reminder 103. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }103
Since 103 is less than 257, stop the division. The reminder is 103. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}