Solve for x (complex solution)
x=\frac{-5\sqrt{287}i-5}{2}\approx -2.5-42.352685865i
x=\frac{-5+5\sqrt{287}i}{2}\approx -2.5+42.352685865i
Graph
Share
Copied to clipboard
x\times 360-\left(x+5\right)\times 360=x\left(x+5\right)
Variable x cannot be equal to any of the values -5,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+5\right), the least common multiple of x+5,x.
x\times 360-\left(360x+1800\right)=x\left(x+5\right)
Use the distributive property to multiply x+5 by 360.
x\times 360-360x-1800=x\left(x+5\right)
To find the opposite of 360x+1800, find the opposite of each term.
-1800=x\left(x+5\right)
Combine x\times 360 and -360x to get 0.
-1800=x^{2}+5x
Use the distributive property to multiply x by x+5.
x^{2}+5x=-1800
Swap sides so that all variable terms are on the left hand side.
x^{2}+5x+1800=0
Add 1800 to both sides.
x=\frac{-5±\sqrt{5^{2}-4\times 1800}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and 1800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 1800}}{2}
Square 5.
x=\frac{-5±\sqrt{25-7200}}{2}
Multiply -4 times 1800.
x=\frac{-5±\sqrt{-7175}}{2}
Add 25 to -7200.
x=\frac{-5±5\sqrt{287}i}{2}
Take the square root of -7175.
x=\frac{-5+5\sqrt{287}i}{2}
Now solve the equation x=\frac{-5±5\sqrt{287}i}{2} when ± is plus. Add -5 to 5i\sqrt{287}.
x=\frac{-5\sqrt{287}i-5}{2}
Now solve the equation x=\frac{-5±5\sqrt{287}i}{2} when ± is minus. Subtract 5i\sqrt{287} from -5.
x=\frac{-5+5\sqrt{287}i}{2} x=\frac{-5\sqrt{287}i-5}{2}
The equation is now solved.
x\times 360-\left(x+5\right)\times 360=x\left(x+5\right)
Variable x cannot be equal to any of the values -5,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+5\right), the least common multiple of x+5,x.
x\times 360-\left(360x+1800\right)=x\left(x+5\right)
Use the distributive property to multiply x+5 by 360.
x\times 360-360x-1800=x\left(x+5\right)
To find the opposite of 360x+1800, find the opposite of each term.
-1800=x\left(x+5\right)
Combine x\times 360 and -360x to get 0.
-1800=x^{2}+5x
Use the distributive property to multiply x by x+5.
x^{2}+5x=-1800
Swap sides so that all variable terms are on the left hand side.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-1800+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-1800+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=-\frac{7175}{4}
Add -1800 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=-\frac{7175}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{7175}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{5\sqrt{287}i}{2} x+\frac{5}{2}=-\frac{5\sqrt{287}i}{2}
Simplify.
x=\frac{-5+5\sqrt{287}i}{2} x=\frac{-5\sqrt{287}i-5}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}