360 + 1.6 x < 400 + 2 ( x - 8 ) \cdot 75 \%
Solve for x
x<280
Graph
Share
Copied to clipboard
360+1.6x<400+2\left(x-8\right)\times \frac{3}{4}
Reduce the fraction \frac{75}{100} to lowest terms by extracting and canceling out 25.
360+1.6x<400+\frac{2\times 3}{4}\left(x-8\right)
Express 2\times \frac{3}{4} as a single fraction.
360+1.6x<400+\frac{6}{4}\left(x-8\right)
Multiply 2 and 3 to get 6.
360+1.6x<400+\frac{3}{2}\left(x-8\right)
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
360+1.6x<400+\frac{3}{2}x+\frac{3}{2}\left(-8\right)
Use the distributive property to multiply \frac{3}{2} by x-8.
360+1.6x<400+\frac{3}{2}x+\frac{3\left(-8\right)}{2}
Express \frac{3}{2}\left(-8\right) as a single fraction.
360+1.6x<400+\frac{3}{2}x+\frac{-24}{2}
Multiply 3 and -8 to get -24.
360+1.6x<400+\frac{3}{2}x-12
Divide -24 by 2 to get -12.
360+1.6x<388+\frac{3}{2}x
Subtract 12 from 400 to get 388.
360+1.6x-\frac{3}{2}x<388
Subtract \frac{3}{2}x from both sides.
360+\frac{1}{10}x<388
Combine 1.6x and -\frac{3}{2}x to get \frac{1}{10}x.
\frac{1}{10}x<388-360
Subtract 360 from both sides.
\frac{1}{10}x<28
Subtract 360 from 388 to get 28.
x<28\times 10
Multiply both sides by 10, the reciprocal of \frac{1}{10}. Since \frac{1}{10} is positive, the inequality direction remains the same.
x<280
Multiply 28 and 10 to get 280.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}