Solve for g
\left\{\begin{matrix}\\g=0\text{, }&\text{unconditionally}\\g\in \mathrm{R}\text{, }&k=\frac{365}{71e}\end{matrix}\right.
Solve for k
\left\{\begin{matrix}\\k=\frac{365}{71e}\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&g=0\end{matrix}\right.
Share
Copied to clipboard
36.5g-kge\times 7.1=0
Subtract kge\times 7.1 from both sides.
36.5g-7.1kge=0
Multiply -1 and 7.1 to get -7.1.
\left(36.5-7.1ke\right)g=0
Combine all terms containing g.
\left(-\frac{71ek}{10}+36.5\right)g=0
The equation is in standard form.
g=0
Divide 0 by 36.5-7.1ke.
kge\times 7.1=36.5g
Swap sides so that all variable terms are on the left hand side.
\frac{71eg}{10}k=\frac{73g}{2}
The equation is in standard form.
\frac{10\times \frac{71eg}{10}k}{71eg}=\frac{73g}{2\times \frac{71eg}{10}}
Divide both sides by 7.1ge.
k=\frac{73g}{2\times \frac{71eg}{10}}
Dividing by 7.1ge undoes the multiplication by 7.1ge.
k=\frac{365}{71e}
Divide \frac{73g}{2} by 7.1ge.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}