Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

36-4-22b-b^{2}
Calculate 2 to the power of 2 and get 4.
32-22b-b^{2}
Subtract 4 from 36 to get 32.
factor(36-4-22b-b^{2})
Calculate 2 to the power of 2 and get 4.
factor(32-22b-b^{2})
Subtract 4 from 36 to get 32.
-b^{2}-22b+32=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-1\right)\times 32}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-22\right)±\sqrt{484-4\left(-1\right)\times 32}}{2\left(-1\right)}
Square -22.
b=\frac{-\left(-22\right)±\sqrt{484+4\times 32}}{2\left(-1\right)}
Multiply -4 times -1.
b=\frac{-\left(-22\right)±\sqrt{484+128}}{2\left(-1\right)}
Multiply 4 times 32.
b=\frac{-\left(-22\right)±\sqrt{612}}{2\left(-1\right)}
Add 484 to 128.
b=\frac{-\left(-22\right)±6\sqrt{17}}{2\left(-1\right)}
Take the square root of 612.
b=\frac{22±6\sqrt{17}}{2\left(-1\right)}
The opposite of -22 is 22.
b=\frac{22±6\sqrt{17}}{-2}
Multiply 2 times -1.
b=\frac{6\sqrt{17}+22}{-2}
Now solve the equation b=\frac{22±6\sqrt{17}}{-2} when ± is plus. Add 22 to 6\sqrt{17}.
b=-3\sqrt{17}-11
Divide 22+6\sqrt{17} by -2.
b=\frac{22-6\sqrt{17}}{-2}
Now solve the equation b=\frac{22±6\sqrt{17}}{-2} when ± is minus. Subtract 6\sqrt{17} from 22.
b=3\sqrt{17}-11
Divide 22-6\sqrt{17} by -2.
-b^{2}-22b+32=-\left(b-\left(-3\sqrt{17}-11\right)\right)\left(b-\left(3\sqrt{17}-11\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -11-3\sqrt{17} for x_{1} and -11+3\sqrt{17} for x_{2}.