Solve for x
x=3
x = \frac{33}{25} = 1\frac{8}{25} = 1.32
Graph
Share
Copied to clipboard
\frac{25}{9}x^{2}-12x+36=25
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{25}{9}x^{2}-12x+36-25=25-25
Subtract 25 from both sides of the equation.
\frac{25}{9}x^{2}-12x+36-25=0
Subtracting 25 from itself leaves 0.
\frac{25}{9}x^{2}-12x+11=0
Subtract 25 from 36.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times \frac{25}{9}\times 11}}{2\times \frac{25}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{25}{9} for a, -12 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times \frac{25}{9}\times 11}}{2\times \frac{25}{9}}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-\frac{100}{9}\times 11}}{2\times \frac{25}{9}}
Multiply -4 times \frac{25}{9}.
x=\frac{-\left(-12\right)±\sqrt{144-\frac{1100}{9}}}{2\times \frac{25}{9}}
Multiply -\frac{100}{9} times 11.
x=\frac{-\left(-12\right)±\sqrt{\frac{196}{9}}}{2\times \frac{25}{9}}
Add 144 to -\frac{1100}{9}.
x=\frac{-\left(-12\right)±\frac{14}{3}}{2\times \frac{25}{9}}
Take the square root of \frac{196}{9}.
x=\frac{12±\frac{14}{3}}{2\times \frac{25}{9}}
The opposite of -12 is 12.
x=\frac{12±\frac{14}{3}}{\frac{50}{9}}
Multiply 2 times \frac{25}{9}.
x=\frac{\frac{50}{3}}{\frac{50}{9}}
Now solve the equation x=\frac{12±\frac{14}{3}}{\frac{50}{9}} when ± is plus. Add 12 to \frac{14}{3}.
x=3
Divide \frac{50}{3} by \frac{50}{9} by multiplying \frac{50}{3} by the reciprocal of \frac{50}{9}.
x=\frac{\frac{22}{3}}{\frac{50}{9}}
Now solve the equation x=\frac{12±\frac{14}{3}}{\frac{50}{9}} when ± is minus. Subtract \frac{14}{3} from 12.
x=\frac{33}{25}
Divide \frac{22}{3} by \frac{50}{9} by multiplying \frac{22}{3} by the reciprocal of \frac{50}{9}.
x=3 x=\frac{33}{25}
The equation is now solved.
\frac{25}{9}x^{2}-12x+36=25
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{25}{9}x^{2}-12x+36-36=25-36
Subtract 36 from both sides of the equation.
\frac{25}{9}x^{2}-12x=25-36
Subtracting 36 from itself leaves 0.
\frac{25}{9}x^{2}-12x=-11
Subtract 36 from 25.
\frac{\frac{25}{9}x^{2}-12x}{\frac{25}{9}}=-\frac{11}{\frac{25}{9}}
Divide both sides of the equation by \frac{25}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{12}{\frac{25}{9}}\right)x=-\frac{11}{\frac{25}{9}}
Dividing by \frac{25}{9} undoes the multiplication by \frac{25}{9}.
x^{2}-\frac{108}{25}x=-\frac{11}{\frac{25}{9}}
Divide -12 by \frac{25}{9} by multiplying -12 by the reciprocal of \frac{25}{9}.
x^{2}-\frac{108}{25}x=-\frac{99}{25}
Divide -11 by \frac{25}{9} by multiplying -11 by the reciprocal of \frac{25}{9}.
x^{2}-\frac{108}{25}x+\left(-\frac{54}{25}\right)^{2}=-\frac{99}{25}+\left(-\frac{54}{25}\right)^{2}
Divide -\frac{108}{25}, the coefficient of the x term, by 2 to get -\frac{54}{25}. Then add the square of -\frac{54}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{108}{25}x+\frac{2916}{625}=-\frac{99}{25}+\frac{2916}{625}
Square -\frac{54}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{108}{25}x+\frac{2916}{625}=\frac{441}{625}
Add -\frac{99}{25} to \frac{2916}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{54}{25}\right)^{2}=\frac{441}{625}
Factor x^{2}-\frac{108}{25}x+\frac{2916}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{54}{25}\right)^{2}}=\sqrt{\frac{441}{625}}
Take the square root of both sides of the equation.
x-\frac{54}{25}=\frac{21}{25} x-\frac{54}{25}=-\frac{21}{25}
Simplify.
x=3 x=\frac{33}{25}
Add \frac{54}{25} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}