Solve for y
y=-4
Graph
Share
Copied to clipboard
36-\left(3+8y-3y-15\right)=-3\left(4y-5\right)-\left(6\left(y-1\right)-5y+5\right)
Use the distributive property to multiply -3 by y+5.
36-\left(3+5y-15\right)=-3\left(4y-5\right)-\left(6\left(y-1\right)-5y+5\right)
Combine 8y and -3y to get 5y.
36-\left(-12+5y\right)=-3\left(4y-5\right)-\left(6\left(y-1\right)-5y+5\right)
Subtract 15 from 3 to get -12.
36-\left(-12\right)-5y=-3\left(4y-5\right)-\left(6\left(y-1\right)-5y+5\right)
To find the opposite of -12+5y, find the opposite of each term.
36+12-5y=-3\left(4y-5\right)-\left(6\left(y-1\right)-5y+5\right)
The opposite of -12 is 12.
48-5y=-3\left(4y-5\right)-\left(6\left(y-1\right)-5y+5\right)
Add 36 and 12 to get 48.
48-5y=-12y+15-\left(6\left(y-1\right)-5y+5\right)
Use the distributive property to multiply -3 by 4y-5.
48-5y=-12y+15-\left(6y-6-5y+5\right)
Use the distributive property to multiply 6 by y-1.
48-5y=-12y+15-\left(y-6+5\right)
Combine 6y and -5y to get y.
48-5y=-12y+15-\left(y-1\right)
Add -6 and 5 to get -1.
48-5y=-12y+15-y-\left(-1\right)
To find the opposite of y-1, find the opposite of each term.
48-5y=-12y+15-y+1
The opposite of -1 is 1.
48-5y=-13y+15+1
Combine -12y and -y to get -13y.
48-5y=-13y+16
Add 15 and 1 to get 16.
48-5y+13y=16
Add 13y to both sides.
48+8y=16
Combine -5y and 13y to get 8y.
8y=16-48
Subtract 48 from both sides.
8y=-32
Subtract 48 from 16 to get -32.
y=\frac{-32}{8}
Divide both sides by 8.
y=-4
Divide -32 by 8 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}