Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(12x^{2}-4x-5\right)
Factor out 3.
a+b=-4 ab=12\left(-5\right)=-60
Consider 12x^{2}-4x-5. Factor the expression by grouping. First, the expression needs to be rewritten as 12x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Calculate the sum for each pair.
a=-10 b=6
The solution is the pair that gives sum -4.
\left(12x^{2}-10x\right)+\left(6x-5\right)
Rewrite 12x^{2}-4x-5 as \left(12x^{2}-10x\right)+\left(6x-5\right).
2x\left(6x-5\right)+6x-5
Factor out 2x in 12x^{2}-10x.
\left(6x-5\right)\left(2x+1\right)
Factor out common term 6x-5 by using distributive property.
3\left(6x-5\right)\left(2x+1\right)
Rewrite the complete factored expression.
36x^{2}-12x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 36\left(-15\right)}}{2\times 36}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 36\left(-15\right)}}{2\times 36}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-144\left(-15\right)}}{2\times 36}
Multiply -4 times 36.
x=\frac{-\left(-12\right)±\sqrt{144+2160}}{2\times 36}
Multiply -144 times -15.
x=\frac{-\left(-12\right)±\sqrt{2304}}{2\times 36}
Add 144 to 2160.
x=\frac{-\left(-12\right)±48}{2\times 36}
Take the square root of 2304.
x=\frac{12±48}{2\times 36}
The opposite of -12 is 12.
x=\frac{12±48}{72}
Multiply 2 times 36.
x=\frac{60}{72}
Now solve the equation x=\frac{12±48}{72} when ± is plus. Add 12 to 48.
x=\frac{5}{6}
Reduce the fraction \frac{60}{72} to lowest terms by extracting and canceling out 12.
x=-\frac{36}{72}
Now solve the equation x=\frac{12±48}{72} when ± is minus. Subtract 48 from 12.
x=-\frac{1}{2}
Reduce the fraction \frac{-36}{72} to lowest terms by extracting and canceling out 36.
36x^{2}-12x-15=36\left(x-\frac{5}{6}\right)\left(x-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{6} for x_{1} and -\frac{1}{2} for x_{2}.
36x^{2}-12x-15=36\left(x-\frac{5}{6}\right)\left(x+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
36x^{2}-12x-15=36\times \frac{6x-5}{6}\left(x+\frac{1}{2}\right)
Subtract \frac{5}{6} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
36x^{2}-12x-15=36\times \frac{6x-5}{6}\times \frac{2x+1}{2}
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
36x^{2}-12x-15=36\times \frac{\left(6x-5\right)\left(2x+1\right)}{6\times 2}
Multiply \frac{6x-5}{6} times \frac{2x+1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
36x^{2}-12x-15=36\times \frac{\left(6x-5\right)\left(2x+1\right)}{12}
Multiply 6 times 2.
36x^{2}-12x-15=3\left(6x-5\right)\left(2x+1\right)
Cancel out 12, the greatest common factor in 36 and 12.