Factor
\left(6r-5\right)\left(6r+1\right)
Evaluate
\left(6r-5\right)\left(6r+1\right)
Share
Copied to clipboard
a+b=-24 ab=36\left(-5\right)=-180
Factor the expression by grouping. First, the expression needs to be rewritten as 36r^{2}+ar+br-5. To find a and b, set up a system to be solved.
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -180.
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
Calculate the sum for each pair.
a=-30 b=6
The solution is the pair that gives sum -24.
\left(36r^{2}-30r\right)+\left(6r-5\right)
Rewrite 36r^{2}-24r-5 as \left(36r^{2}-30r\right)+\left(6r-5\right).
6r\left(6r-5\right)+6r-5
Factor out 6r in 36r^{2}-30r.
\left(6r-5\right)\left(6r+1\right)
Factor out common term 6r-5 by using distributive property.
36r^{2}-24r-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
r=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 36\left(-5\right)}}{2\times 36}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-\left(-24\right)±\sqrt{576-4\times 36\left(-5\right)}}{2\times 36}
Square -24.
r=\frac{-\left(-24\right)±\sqrt{576-144\left(-5\right)}}{2\times 36}
Multiply -4 times 36.
r=\frac{-\left(-24\right)±\sqrt{576+720}}{2\times 36}
Multiply -144 times -5.
r=\frac{-\left(-24\right)±\sqrt{1296}}{2\times 36}
Add 576 to 720.
r=\frac{-\left(-24\right)±36}{2\times 36}
Take the square root of 1296.
r=\frac{24±36}{2\times 36}
The opposite of -24 is 24.
r=\frac{24±36}{72}
Multiply 2 times 36.
r=\frac{60}{72}
Now solve the equation r=\frac{24±36}{72} when ± is plus. Add 24 to 36.
r=\frac{5}{6}
Reduce the fraction \frac{60}{72} to lowest terms by extracting and canceling out 12.
r=-\frac{12}{72}
Now solve the equation r=\frac{24±36}{72} when ± is minus. Subtract 36 from 24.
r=-\frac{1}{6}
Reduce the fraction \frac{-12}{72} to lowest terms by extracting and canceling out 12.
36r^{2}-24r-5=36\left(r-\frac{5}{6}\right)\left(r-\left(-\frac{1}{6}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{6} for x_{1} and -\frac{1}{6} for x_{2}.
36r^{2}-24r-5=36\left(r-\frac{5}{6}\right)\left(r+\frac{1}{6}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
36r^{2}-24r-5=36\times \frac{6r-5}{6}\left(r+\frac{1}{6}\right)
Subtract \frac{5}{6} from r by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
36r^{2}-24r-5=36\times \frac{6r-5}{6}\times \frac{6r+1}{6}
Add \frac{1}{6} to r by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
36r^{2}-24r-5=36\times \frac{\left(6r-5\right)\left(6r+1\right)}{6\times 6}
Multiply \frac{6r-5}{6} times \frac{6r+1}{6} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
36r^{2}-24r-5=36\times \frac{\left(6r-5\right)\left(6r+1\right)}{36}
Multiply 6 times 6.
36r^{2}-24r-5=\left(6r-5\right)\left(6r+1\right)
Cancel out 36, the greatest common factor in 36 and 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}