Evaluate
150b^{2}+97ab-357a^{2}
Expand
150b^{2}+97ab-357a^{2}
Share
Copied to clipboard
\left(72a+36b\right)\left(4b-5a\right)-\left(a-3b\right)\left(2b-3a\right)
Use the distributive property to multiply 36 by 2a+b.
288ab-360a^{2}+144b^{2}-180ba-\left(a-3b\right)\left(2b-3a\right)
Apply the distributive property by multiplying each term of 72a+36b by each term of 4b-5a.
108ab-360a^{2}+144b^{2}-\left(a-3b\right)\left(2b-3a\right)
Combine 288ab and -180ba to get 108ab.
108ab-360a^{2}+144b^{2}-\left(2ab-3a^{2}-6b^{2}+9ba\right)
Apply the distributive property by multiplying each term of a-3b by each term of 2b-3a.
108ab-360a^{2}+144b^{2}-\left(11ab-3a^{2}-6b^{2}\right)
Combine 2ab and 9ba to get 11ab.
108ab-360a^{2}+144b^{2}-11ab-\left(-3a^{2}\right)-\left(-6b^{2}\right)
To find the opposite of 11ab-3a^{2}-6b^{2}, find the opposite of each term.
108ab-360a^{2}+144b^{2}-11ab+3a^{2}-\left(-6b^{2}\right)
The opposite of -3a^{2} is 3a^{2}.
108ab-360a^{2}+144b^{2}-11ab+3a^{2}+6b^{2}
The opposite of -6b^{2} is 6b^{2}.
97ab-360a^{2}+144b^{2}+3a^{2}+6b^{2}
Combine 108ab and -11ab to get 97ab.
97ab-357a^{2}+144b^{2}+6b^{2}
Combine -360a^{2} and 3a^{2} to get -357a^{2}.
97ab-357a^{2}+150b^{2}
Combine 144b^{2} and 6b^{2} to get 150b^{2}.
\left(72a+36b\right)\left(4b-5a\right)-\left(a-3b\right)\left(2b-3a\right)
Use the distributive property to multiply 36 by 2a+b.
288ab-360a^{2}+144b^{2}-180ba-\left(a-3b\right)\left(2b-3a\right)
Apply the distributive property by multiplying each term of 72a+36b by each term of 4b-5a.
108ab-360a^{2}+144b^{2}-\left(a-3b\right)\left(2b-3a\right)
Combine 288ab and -180ba to get 108ab.
108ab-360a^{2}+144b^{2}-\left(2ab-3a^{2}-6b^{2}+9ba\right)
Apply the distributive property by multiplying each term of a-3b by each term of 2b-3a.
108ab-360a^{2}+144b^{2}-\left(11ab-3a^{2}-6b^{2}\right)
Combine 2ab and 9ba to get 11ab.
108ab-360a^{2}+144b^{2}-11ab-\left(-3a^{2}\right)-\left(-6b^{2}\right)
To find the opposite of 11ab-3a^{2}-6b^{2}, find the opposite of each term.
108ab-360a^{2}+144b^{2}-11ab+3a^{2}-\left(-6b^{2}\right)
The opposite of -3a^{2} is 3a^{2}.
108ab-360a^{2}+144b^{2}-11ab+3a^{2}+6b^{2}
The opposite of -6b^{2} is 6b^{2}.
97ab-360a^{2}+144b^{2}+3a^{2}+6b^{2}
Combine 108ab and -11ab to get 97ab.
97ab-357a^{2}+144b^{2}+6b^{2}
Combine -360a^{2} and 3a^{2} to get -357a^{2}.
97ab-357a^{2}+150b^{2}
Combine 144b^{2} and 6b^{2} to get 150b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}