Solve for x
x=4
Graph
Share
Copied to clipboard
36=12\left(2x-5\right)
Variable x cannot be equal to \frac{5}{2} since division by zero is not defined. Multiply both sides of the equation by 2x-5.
36=24x-60
Use the distributive property to multiply 12 by 2x-5.
24x-60=36
Swap sides so that all variable terms are on the left hand side.
24x=36+60
Add 60 to both sides.
24x=96
Add 36 and 60 to get 96.
x=\frac{96}{24}
Divide both sides by 24.
x=4
Divide 96 by 24 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}