Evaluate
\frac{36}{19}\approx 1.894736842
Factor
\frac{2 ^ {2} \cdot 3 ^ {2}}{19} = 1\frac{17}{19} = 1.894736842105263
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)36}\\\end{array}
Use the 1^{st} digit 3 from dividend 36
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)36}\\\end{array}
Since 3 is less than 19, use the next digit 6 from dividend 36 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)36}\\\end{array}
Use the 2^{nd} digit 6 from dividend 36
\begin{array}{l}\phantom{19)}01\phantom{4}\\19\overline{)36}\\\phantom{19)}\underline{\phantom{}19\phantom{}}\\\phantom{19)}17\\\end{array}
Find closest multiple of 19 to 36. We see that 1 \times 19 = 19 is the nearest. Now subtract 19 from 36 to get reminder 17. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }17
Since 17 is less than 19, stop the division. The reminder is 17. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}