Solve for t
t=-\frac{i\times 6\sqrt{10}}{7}\approx -0-2.710523709i
t=\frac{i\times 6\sqrt{10}}{7}\approx 2.710523709i
Share
Copied to clipboard
36=-4.9t^{2}
Anything plus zero gives itself.
-4.9t^{2}=36
Swap sides so that all variable terms are on the left hand side.
t^{2}=\frac{36}{-4.9}
Divide both sides by -4.9.
t^{2}=\frac{360}{-49}
Expand \frac{36}{-4.9} by multiplying both numerator and the denominator by 10.
t^{2}=-\frac{360}{49}
Fraction \frac{360}{-49} can be rewritten as -\frac{360}{49} by extracting the negative sign.
t=\frac{6\sqrt{10}i}{7} t=-\frac{6\sqrt{10}i}{7}
The equation is now solved.
36=-4.9t^{2}
Anything plus zero gives itself.
-4.9t^{2}=36
Swap sides so that all variable terms are on the left hand side.
-4.9t^{2}-36=0
Subtract 36 from both sides.
t=\frac{0±\sqrt{0^{2}-4\left(-4.9\right)\left(-36\right)}}{2\left(-4.9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4.9 for a, 0 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-4.9\right)\left(-36\right)}}{2\left(-4.9\right)}
Square 0.
t=\frac{0±\sqrt{19.6\left(-36\right)}}{2\left(-4.9\right)}
Multiply -4 times -4.9.
t=\frac{0±\sqrt{-705.6}}{2\left(-4.9\right)}
Multiply 19.6 times -36.
t=\frac{0±\frac{42\sqrt{10}i}{5}}{2\left(-4.9\right)}
Take the square root of -705.6.
t=\frac{0±\frac{42\sqrt{10}i}{5}}{-9.8}
Multiply 2 times -4.9.
t=-\frac{6\sqrt{10}i}{7}
Now solve the equation t=\frac{0±\frac{42\sqrt{10}i}{5}}{-9.8} when ± is plus.
t=\frac{6\sqrt{10}i}{7}
Now solve the equation t=\frac{0±\frac{42\sqrt{10}i}{5}}{-9.8} when ± is minus.
t=-\frac{6\sqrt{10}i}{7} t=\frac{6\sqrt{10}i}{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}