Solve for x
x=-\frac{y}{5}-\frac{z}{7}+\frac{117}{7}
Solve for y
y=-\frac{5z}{7}-5x+\frac{585}{7}
Share
Copied to clipboard
35x+5z=585-7y
Subtract 7y from both sides.
35x=585-7y-5z
Subtract 5z from both sides.
35x=585-5z-7y
The equation is in standard form.
\frac{35x}{35}=\frac{585-5z-7y}{35}
Divide both sides by 35.
x=\frac{585-5z-7y}{35}
Dividing by 35 undoes the multiplication by 35.
x=-\frac{y}{5}-\frac{z}{7}+\frac{117}{7}
Divide 585-7y-5z by 35.
7y+5z=585-35x
Subtract 35x from both sides.
7y=585-35x-5z
Subtract 5z from both sides.
7y=585-5z-35x
The equation is in standard form.
\frac{7y}{7}=\frac{585-5z-35x}{7}
Divide both sides by 7.
y=\frac{585-5z-35x}{7}
Dividing by 7 undoes the multiplication by 7.
y=-\frac{5z}{7}-5x+\frac{585}{7}
Divide 585-35x-5z by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}