Evaluate
\frac{614400}{539}\approx 1139.888682746
Factor
\frac{2 ^ {13} \cdot 3 \cdot 5 ^ {2}}{7 ^ {2} \cdot 11} = 1139\frac{479}{539} = 1139.8886827458257
Share
Copied to clipboard
\begin{array}{l}\phantom{310464)}\phantom{1}\\310464\overline{)353894400}\\\end{array}
Use the 1^{st} digit 3 from dividend 353894400
\begin{array}{l}\phantom{310464)}0\phantom{2}\\310464\overline{)353894400}\\\end{array}
Since 3 is less than 310464, use the next digit 5 from dividend 353894400 and add 0 to the quotient
\begin{array}{l}\phantom{310464)}0\phantom{3}\\310464\overline{)353894400}\\\end{array}
Use the 2^{nd} digit 5 from dividend 353894400
\begin{array}{l}\phantom{310464)}00\phantom{4}\\310464\overline{)353894400}\\\end{array}
Since 35 is less than 310464, use the next digit 3 from dividend 353894400 and add 0 to the quotient
\begin{array}{l}\phantom{310464)}00\phantom{5}\\310464\overline{)353894400}\\\end{array}
Use the 3^{rd} digit 3 from dividend 353894400
\begin{array}{l}\phantom{310464)}000\phantom{6}\\310464\overline{)353894400}\\\end{array}
Since 353 is less than 310464, use the next digit 8 from dividend 353894400 and add 0 to the quotient
\begin{array}{l}\phantom{310464)}000\phantom{7}\\310464\overline{)353894400}\\\end{array}
Use the 4^{th} digit 8 from dividend 353894400
\begin{array}{l}\phantom{310464)}0000\phantom{8}\\310464\overline{)353894400}\\\end{array}
Since 3538 is less than 310464, use the next digit 9 from dividend 353894400 and add 0 to the quotient
\begin{array}{l}\phantom{310464)}0000\phantom{9}\\310464\overline{)353894400}\\\end{array}
Use the 5^{th} digit 9 from dividend 353894400
\begin{array}{l}\phantom{310464)}00000\phantom{10}\\310464\overline{)353894400}\\\end{array}
Since 35389 is less than 310464, use the next digit 4 from dividend 353894400 and add 0 to the quotient
\begin{array}{l}\phantom{310464)}00000\phantom{11}\\310464\overline{)353894400}\\\end{array}
Use the 6^{th} digit 4 from dividend 353894400
\begin{array}{l}\phantom{310464)}000001\phantom{12}\\310464\overline{)353894400}\\\phantom{310464)}\underline{\phantom{}310464\phantom{999}}\\\phantom{310464)9}43430\\\end{array}
Find closest multiple of 310464 to 353894. We see that 1 \times 310464 = 310464 is the nearest. Now subtract 310464 from 353894 to get reminder 43430. Add 1 to quotient.
\begin{array}{l}\phantom{310464)}000001\phantom{13}\\310464\overline{)353894400}\\\phantom{310464)}\underline{\phantom{}310464\phantom{999}}\\\phantom{310464)9}434304\\\end{array}
Use the 7^{th} digit 4 from dividend 353894400
\begin{array}{l}\phantom{310464)}0000011\phantom{14}\\310464\overline{)353894400}\\\phantom{310464)}\underline{\phantom{}310464\phantom{999}}\\\phantom{310464)9}434304\\\phantom{310464)}\underline{\phantom{9}310464\phantom{99}}\\\phantom{310464)9}123840\\\end{array}
Find closest multiple of 310464 to 434304. We see that 1 \times 310464 = 310464 is the nearest. Now subtract 310464 from 434304 to get reminder 123840. Add 1 to quotient.
\begin{array}{l}\phantom{310464)}0000011\phantom{15}\\310464\overline{)353894400}\\\phantom{310464)}\underline{\phantom{}310464\phantom{999}}\\\phantom{310464)9}434304\\\phantom{310464)}\underline{\phantom{9}310464\phantom{99}}\\\phantom{310464)9}1238400\\\end{array}
Use the 8^{th} digit 0 from dividend 353894400
\begin{array}{l}\phantom{310464)}00000113\phantom{16}\\310464\overline{)353894400}\\\phantom{310464)}\underline{\phantom{}310464\phantom{999}}\\\phantom{310464)9}434304\\\phantom{310464)}\underline{\phantom{9}310464\phantom{99}}\\\phantom{310464)9}1238400\\\phantom{310464)}\underline{\phantom{99}931392\phantom{9}}\\\phantom{310464)99}307008\\\end{array}
Find closest multiple of 310464 to 1238400. We see that 3 \times 310464 = 931392 is the nearest. Now subtract 931392 from 1238400 to get reminder 307008. Add 3 to quotient.
\begin{array}{l}\phantom{310464)}00000113\phantom{17}\\310464\overline{)353894400}\\\phantom{310464)}\underline{\phantom{}310464\phantom{999}}\\\phantom{310464)9}434304\\\phantom{310464)}\underline{\phantom{9}310464\phantom{99}}\\\phantom{310464)9}1238400\\\phantom{310464)}\underline{\phantom{99}931392\phantom{9}}\\\phantom{310464)99}3070080\\\end{array}
Use the 9^{th} digit 0 from dividend 353894400
\begin{array}{l}\phantom{310464)}000001139\phantom{18}\\310464\overline{)353894400}\\\phantom{310464)}\underline{\phantom{}310464\phantom{999}}\\\phantom{310464)9}434304\\\phantom{310464)}\underline{\phantom{9}310464\phantom{99}}\\\phantom{310464)9}1238400\\\phantom{310464)}\underline{\phantom{99}931392\phantom{9}}\\\phantom{310464)99}3070080\\\phantom{310464)}\underline{\phantom{99}2794176\phantom{}}\\\phantom{310464)999}275904\\\end{array}
Find closest multiple of 310464 to 3070080. We see that 9 \times 310464 = 2794176 is the nearest. Now subtract 2794176 from 3070080 to get reminder 275904. Add 9 to quotient.
\text{Quotient: }1139 \text{Reminder: }275904
Since 275904 is less than 310464, stop the division. The reminder is 275904. The topmost line 000001139 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1139.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}