Solve for h
h=\frac{50\ln(35)-50\ln(29)}{3}\approx 3.134203858
Solve for h (complex solution)
h=\frac{i\times 100\pi n_{1}}{3}+\frac{50\ln(35)}{3}-\frac{50\ln(29)}{3}
n_{1}\in \mathrm{Z}
Share
Copied to clipboard
\frac{3500}{2900}=e^{0.06h}
Divide both sides by 2900.
\frac{35}{29}=e^{0.06h}
Reduce the fraction \frac{3500}{2900} to lowest terms by extracting and canceling out 100.
e^{0.06h}=\frac{35}{29}
Swap sides so that all variable terms are on the left hand side.
\log(e^{0.06h})=\log(\frac{35}{29})
Take the logarithm of both sides of the equation.
0.06h\log(e)=\log(\frac{35}{29})
The logarithm of a number raised to a power is the power times the logarithm of the number.
0.06h=\frac{\log(\frac{35}{29})}{\log(e)}
Divide both sides by \log(e).
0.06h=\log_{e}\left(\frac{35}{29}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
h=\frac{\ln(\frac{35}{29})}{0.06}
Divide both sides of the equation by 0.06, which is the same as multiplying both sides by the reciprocal of the fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}