Evaluate
14
Factor
2\times 7
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)350}\\\end{array}
Use the 1^{st} digit 3 from dividend 350
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)350}\\\end{array}
Since 3 is less than 25, use the next digit 5 from dividend 350 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)350}\\\end{array}
Use the 2^{nd} digit 5 from dividend 350
\begin{array}{l}\phantom{25)}01\phantom{4}\\25\overline{)350}\\\phantom{25)}\underline{\phantom{}25\phantom{9}}\\\phantom{25)}10\\\end{array}
Find closest multiple of 25 to 35. We see that 1 \times 25 = 25 is the nearest. Now subtract 25 from 35 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{25)}01\phantom{5}\\25\overline{)350}\\\phantom{25)}\underline{\phantom{}25\phantom{9}}\\\phantom{25)}100\\\end{array}
Use the 3^{rd} digit 0 from dividend 350
\begin{array}{l}\phantom{25)}014\phantom{6}\\25\overline{)350}\\\phantom{25)}\underline{\phantom{}25\phantom{9}}\\\phantom{25)}100\\\phantom{25)}\underline{\phantom{}100\phantom{}}\\\phantom{25)999}0\\\end{array}
Find closest multiple of 25 to 100. We see that 4 \times 25 = 100 is the nearest. Now subtract 100 from 100 to get reminder 0. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }0
Since 0 is less than 25, stop the division. The reminder is 0. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}