Verify
false
Share
Copied to clipboard
78.6+46.6+18.1+49.1+31.1+11+\frac{14.7}{8}=236.34
Add 35.9 and 42.7 to get 78.6.
125.2+18.1+49.1+31.1+11+\frac{14.7}{8}=236.34
Add 78.6 and 46.6 to get 125.2.
143.3+49.1+31.1+11+\frac{14.7}{8}=236.34
Add 125.2 and 18.1 to get 143.3.
192.4+31.1+11+\frac{14.7}{8}=236.34
Add 143.3 and 49.1 to get 192.4.
223.5+11+\frac{14.7}{8}=236.34
Add 192.4 and 31.1 to get 223.5.
234.5+\frac{14.7}{8}=236.34
Add 223.5 and 11 to get 234.5.
234.5+\frac{147}{80}=236.34
Expand \frac{14.7}{8} by multiplying both numerator and the denominator by 10.
\frac{469}{2}+\frac{147}{80}=236.34
Convert decimal number 234.5 to fraction \frac{2345}{10}. Reduce the fraction \frac{2345}{10} to lowest terms by extracting and canceling out 5.
\frac{18760}{80}+\frac{147}{80}=236.34
Least common multiple of 2 and 80 is 80. Convert \frac{469}{2} and \frac{147}{80} to fractions with denominator 80.
\frac{18760+147}{80}=236.34
Since \frac{18760}{80} and \frac{147}{80} have the same denominator, add them by adding their numerators.
\frac{18907}{80}=236.34
Add 18760 and 147 to get 18907.
\frac{18907}{80}=\frac{11817}{50}
Convert decimal number 236.34 to fraction \frac{23634}{100}. Reduce the fraction \frac{23634}{100} to lowest terms by extracting and canceling out 2.
\frac{94535}{400}=\frac{94536}{400}
Least common multiple of 80 and 50 is 400. Convert \frac{18907}{80} and \frac{11817}{50} to fractions with denominator 400.
\text{false}
Compare \frac{94535}{400} and \frac{94536}{400}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}