Factor
\left(7x-5\right)\left(5x+9\right)
Evaluate
\left(7x-5\right)\left(5x+9\right)
Graph
Share
Copied to clipboard
a+b=38 ab=35\left(-45\right)=-1575
Factor the expression by grouping. First, the expression needs to be rewritten as 35x^{2}+ax+bx-45. To find a and b, set up a system to be solved.
-1,1575 -3,525 -5,315 -7,225 -9,175 -15,105 -21,75 -25,63 -35,45
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1575.
-1+1575=1574 -3+525=522 -5+315=310 -7+225=218 -9+175=166 -15+105=90 -21+75=54 -25+63=38 -35+45=10
Calculate the sum for each pair.
a=-25 b=63
The solution is the pair that gives sum 38.
\left(35x^{2}-25x\right)+\left(63x-45\right)
Rewrite 35x^{2}+38x-45 as \left(35x^{2}-25x\right)+\left(63x-45\right).
5x\left(7x-5\right)+9\left(7x-5\right)
Factor out 5x in the first and 9 in the second group.
\left(7x-5\right)\left(5x+9\right)
Factor out common term 7x-5 by using distributive property.
35x^{2}+38x-45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-38±\sqrt{38^{2}-4\times 35\left(-45\right)}}{2\times 35}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-38±\sqrt{1444-4\times 35\left(-45\right)}}{2\times 35}
Square 38.
x=\frac{-38±\sqrt{1444-140\left(-45\right)}}{2\times 35}
Multiply -4 times 35.
x=\frac{-38±\sqrt{1444+6300}}{2\times 35}
Multiply -140 times -45.
x=\frac{-38±\sqrt{7744}}{2\times 35}
Add 1444 to 6300.
x=\frac{-38±88}{2\times 35}
Take the square root of 7744.
x=\frac{-38±88}{70}
Multiply 2 times 35.
x=\frac{50}{70}
Now solve the equation x=\frac{-38±88}{70} when ± is plus. Add -38 to 88.
x=\frac{5}{7}
Reduce the fraction \frac{50}{70} to lowest terms by extracting and canceling out 10.
x=-\frac{126}{70}
Now solve the equation x=\frac{-38±88}{70} when ± is minus. Subtract 88 from -38.
x=-\frac{9}{5}
Reduce the fraction \frac{-126}{70} to lowest terms by extracting and canceling out 14.
35x^{2}+38x-45=35\left(x-\frac{5}{7}\right)\left(x-\left(-\frac{9}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{7} for x_{1} and -\frac{9}{5} for x_{2}.
35x^{2}+38x-45=35\left(x-\frac{5}{7}\right)\left(x+\frac{9}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
35x^{2}+38x-45=35\times \frac{7x-5}{7}\left(x+\frac{9}{5}\right)
Subtract \frac{5}{7} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
35x^{2}+38x-45=35\times \frac{7x-5}{7}\times \frac{5x+9}{5}
Add \frac{9}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
35x^{2}+38x-45=35\times \frac{\left(7x-5\right)\left(5x+9\right)}{7\times 5}
Multiply \frac{7x-5}{7} times \frac{5x+9}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
35x^{2}+38x-45=35\times \frac{\left(7x-5\right)\left(5x+9\right)}{35}
Multiply 7 times 5.
35x^{2}+38x-45=\left(7x-5\right)\left(5x+9\right)
Cancel out 35, the greatest common factor in 35 and 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}