Evaluate
\frac{35}{27}\approx 1.296296296
Factor
\frac{5 \cdot 7}{3 ^ {3}} = 1\frac{8}{27} = 1.2962962962962963
Share
Copied to clipboard
\begin{array}{l}\phantom{27)}\phantom{1}\\27\overline{)35}\\\end{array}
Use the 1^{st} digit 3 from dividend 35
\begin{array}{l}\phantom{27)}0\phantom{2}\\27\overline{)35}\\\end{array}
Since 3 is less than 27, use the next digit 5 from dividend 35 and add 0 to the quotient
\begin{array}{l}\phantom{27)}0\phantom{3}\\27\overline{)35}\\\end{array}
Use the 2^{nd} digit 5 from dividend 35
\begin{array}{l}\phantom{27)}01\phantom{4}\\27\overline{)35}\\\phantom{27)}\underline{\phantom{}27\phantom{}}\\\phantom{27)9}8\\\end{array}
Find closest multiple of 27 to 35. We see that 1 \times 27 = 27 is the nearest. Now subtract 27 from 35 to get reminder 8. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }8
Since 8 is less than 27, stop the division. The reminder is 8. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}