Evaluate
\frac{34641}{26458}\approx 1.309282637
Factor
\frac{3 ^ {3} \cdot 1283}{2 \cdot 13229} = 1\frac{8183}{26458} = 1.3092826366316426
Share
Copied to clipboard
\begin{array}{l}\phantom{26458)}\phantom{1}\\26458\overline{)34641}\\\end{array}
Use the 1^{st} digit 3 from dividend 34641
\begin{array}{l}\phantom{26458)}0\phantom{2}\\26458\overline{)34641}\\\end{array}
Since 3 is less than 26458, use the next digit 4 from dividend 34641 and add 0 to the quotient
\begin{array}{l}\phantom{26458)}0\phantom{3}\\26458\overline{)34641}\\\end{array}
Use the 2^{nd} digit 4 from dividend 34641
\begin{array}{l}\phantom{26458)}00\phantom{4}\\26458\overline{)34641}\\\end{array}
Since 34 is less than 26458, use the next digit 6 from dividend 34641 and add 0 to the quotient
\begin{array}{l}\phantom{26458)}00\phantom{5}\\26458\overline{)34641}\\\end{array}
Use the 3^{rd} digit 6 from dividend 34641
\begin{array}{l}\phantom{26458)}000\phantom{6}\\26458\overline{)34641}\\\end{array}
Since 346 is less than 26458, use the next digit 4 from dividend 34641 and add 0 to the quotient
\begin{array}{l}\phantom{26458)}000\phantom{7}\\26458\overline{)34641}\\\end{array}
Use the 4^{th} digit 4 from dividend 34641
\begin{array}{l}\phantom{26458)}0000\phantom{8}\\26458\overline{)34641}\\\end{array}
Since 3464 is less than 26458, use the next digit 1 from dividend 34641 and add 0 to the quotient
\begin{array}{l}\phantom{26458)}0000\phantom{9}\\26458\overline{)34641}\\\end{array}
Use the 5^{th} digit 1 from dividend 34641
\begin{array}{l}\phantom{26458)}00001\phantom{10}\\26458\overline{)34641}\\\phantom{26458)}\underline{\phantom{}26458\phantom{}}\\\phantom{26458)9}8183\\\end{array}
Find closest multiple of 26458 to 34641. We see that 1 \times 26458 = 26458 is the nearest. Now subtract 26458 from 34641 to get reminder 8183. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }8183
Since 8183 is less than 26458, stop the division. The reminder is 8183. The topmost line 00001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}