Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times9999}34567\\\underline{\times\phantom{9999}12345}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times9999}34567\\\underline{\times\phantom{9999}12345}\\\phantom{\times999}172835\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 34567 with 5. Write the result 172835 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}34567\\\underline{\times\phantom{9999}12345}\\\phantom{\times999}172835\\\phantom{\times99}138268\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 34567 with 4. Write the result 138268 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}34567\\\underline{\times\phantom{9999}12345}\\\phantom{\times999}172835\\\phantom{\times99}138268\phantom{9}\\\phantom{\times9}103701\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 34567 with 3. Write the result 103701 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}34567\\\underline{\times\phantom{9999}12345}\\\phantom{\times999}172835\\\phantom{\times99}138268\phantom{9}\\\phantom{\times9}103701\phantom{99}\\\phantom{\times9}69134\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 34567 with 2. Write the result 69134 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}34567\\\underline{\times\phantom{9999}12345}\\\phantom{\times999}172835\\\phantom{\times99}138268\phantom{9}\\\phantom{\times9}103701\phantom{99}\\\phantom{\times9}69134\phantom{999}\\\underline{\phantom{\times}34567\phantom{9999}}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 34567 with 1. Write the result 34567 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times9999}34567\\\underline{\times\phantom{9999}12345}\\\phantom{\times999}172835\\\phantom{\times99}138268\phantom{9}\\\phantom{\times9}103701\phantom{99}\\\phantom{\times9}69134\phantom{999}\\\underline{\phantom{\times}34567\phantom{9999}}\\\phantom{\times}426729615\end{array}
Now add the intermediate results to get final answer.