Solve for x
x=\frac{\sqrt{55}-2}{17}\approx 0.318599911
x=\frac{-\sqrt{55}-2}{17}\approx -0.553894029
Graph
Share
Copied to clipboard
340x^{2}+80x-60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-80±\sqrt{80^{2}-4\times 340\left(-60\right)}}{2\times 340}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 340 for a, 80 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\times 340\left(-60\right)}}{2\times 340}
Square 80.
x=\frac{-80±\sqrt{6400-1360\left(-60\right)}}{2\times 340}
Multiply -4 times 340.
x=\frac{-80±\sqrt{6400+81600}}{2\times 340}
Multiply -1360 times -60.
x=\frac{-80±\sqrt{88000}}{2\times 340}
Add 6400 to 81600.
x=\frac{-80±40\sqrt{55}}{2\times 340}
Take the square root of 88000.
x=\frac{-80±40\sqrt{55}}{680}
Multiply 2 times 340.
x=\frac{40\sqrt{55}-80}{680}
Now solve the equation x=\frac{-80±40\sqrt{55}}{680} when ± is plus. Add -80 to 40\sqrt{55}.
x=\frac{\sqrt{55}-2}{17}
Divide -80+40\sqrt{55} by 680.
x=\frac{-40\sqrt{55}-80}{680}
Now solve the equation x=\frac{-80±40\sqrt{55}}{680} when ± is minus. Subtract 40\sqrt{55} from -80.
x=\frac{-\sqrt{55}-2}{17}
Divide -80-40\sqrt{55} by 680.
x=\frac{\sqrt{55}-2}{17} x=\frac{-\sqrt{55}-2}{17}
The equation is now solved.
340x^{2}+80x-60=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
340x^{2}+80x-60-\left(-60\right)=-\left(-60\right)
Add 60 to both sides of the equation.
340x^{2}+80x=-\left(-60\right)
Subtracting -60 from itself leaves 0.
340x^{2}+80x=60
Subtract -60 from 0.
\frac{340x^{2}+80x}{340}=\frac{60}{340}
Divide both sides by 340.
x^{2}+\frac{80}{340}x=\frac{60}{340}
Dividing by 340 undoes the multiplication by 340.
x^{2}+\frac{4}{17}x=\frac{60}{340}
Reduce the fraction \frac{80}{340} to lowest terms by extracting and canceling out 20.
x^{2}+\frac{4}{17}x=\frac{3}{17}
Reduce the fraction \frac{60}{340} to lowest terms by extracting and canceling out 20.
x^{2}+\frac{4}{17}x+\left(\frac{2}{17}\right)^{2}=\frac{3}{17}+\left(\frac{2}{17}\right)^{2}
Divide \frac{4}{17}, the coefficient of the x term, by 2 to get \frac{2}{17}. Then add the square of \frac{2}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{17}x+\frac{4}{289}=\frac{3}{17}+\frac{4}{289}
Square \frac{2}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{17}x+\frac{4}{289}=\frac{55}{289}
Add \frac{3}{17} to \frac{4}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{17}\right)^{2}=\frac{55}{289}
Factor x^{2}+\frac{4}{17}x+\frac{4}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{17}\right)^{2}}=\sqrt{\frac{55}{289}}
Take the square root of both sides of the equation.
x+\frac{2}{17}=\frac{\sqrt{55}}{17} x+\frac{2}{17}=-\frac{\sqrt{55}}{17}
Simplify.
x=\frac{\sqrt{55}-2}{17} x=\frac{-\sqrt{55}-2}{17}
Subtract \frac{2}{17} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}