Solve for x
x=\frac{\sqrt{69}+1}{17}\approx 0.547448463
x=\frac{1-\sqrt{69}}{17}\approx -0.429801404
Graph
Share
Copied to clipboard
34x^{2}-4x-4=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
34x^{2}-4x-4-4=4-4
Subtract 4 from both sides of the equation.
34x^{2}-4x-4-4=0
Subtracting 4 from itself leaves 0.
34x^{2}-4x-8=0
Subtract 4 from -4.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 34\left(-8\right)}}{2\times 34}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 34 for a, -4 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 34\left(-8\right)}}{2\times 34}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-136\left(-8\right)}}{2\times 34}
Multiply -4 times 34.
x=\frac{-\left(-4\right)±\sqrt{16+1088}}{2\times 34}
Multiply -136 times -8.
x=\frac{-\left(-4\right)±\sqrt{1104}}{2\times 34}
Add 16 to 1088.
x=\frac{-\left(-4\right)±4\sqrt{69}}{2\times 34}
Take the square root of 1104.
x=\frac{4±4\sqrt{69}}{2\times 34}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{69}}{68}
Multiply 2 times 34.
x=\frac{4\sqrt{69}+4}{68}
Now solve the equation x=\frac{4±4\sqrt{69}}{68} when ± is plus. Add 4 to 4\sqrt{69}.
x=\frac{\sqrt{69}+1}{17}
Divide 4+4\sqrt{69} by 68.
x=\frac{4-4\sqrt{69}}{68}
Now solve the equation x=\frac{4±4\sqrt{69}}{68} when ± is minus. Subtract 4\sqrt{69} from 4.
x=\frac{1-\sqrt{69}}{17}
Divide 4-4\sqrt{69} by 68.
x=\frac{\sqrt{69}+1}{17} x=\frac{1-\sqrt{69}}{17}
The equation is now solved.
34x^{2}-4x-4=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
34x^{2}-4x-4-\left(-4\right)=4-\left(-4\right)
Add 4 to both sides of the equation.
34x^{2}-4x=4-\left(-4\right)
Subtracting -4 from itself leaves 0.
34x^{2}-4x=8
Subtract -4 from 4.
\frac{34x^{2}-4x}{34}=\frac{8}{34}
Divide both sides by 34.
x^{2}+\left(-\frac{4}{34}\right)x=\frac{8}{34}
Dividing by 34 undoes the multiplication by 34.
x^{2}-\frac{2}{17}x=\frac{8}{34}
Reduce the fraction \frac{-4}{34} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{2}{17}x=\frac{4}{17}
Reduce the fraction \frac{8}{34} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{2}{17}x+\left(-\frac{1}{17}\right)^{2}=\frac{4}{17}+\left(-\frac{1}{17}\right)^{2}
Divide -\frac{2}{17}, the coefficient of the x term, by 2 to get -\frac{1}{17}. Then add the square of -\frac{1}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{17}x+\frac{1}{289}=\frac{4}{17}+\frac{1}{289}
Square -\frac{1}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{17}x+\frac{1}{289}=\frac{69}{289}
Add \frac{4}{17} to \frac{1}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{17}\right)^{2}=\frac{69}{289}
Factor x^{2}-\frac{2}{17}x+\frac{1}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{17}\right)^{2}}=\sqrt{\frac{69}{289}}
Take the square root of both sides of the equation.
x-\frac{1}{17}=\frac{\sqrt{69}}{17} x-\frac{1}{17}=-\frac{\sqrt{69}}{17}
Simplify.
x=\frac{\sqrt{69}+1}{17} x=\frac{1-\sqrt{69}}{17}
Add \frac{1}{17} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}