Solve for k
k=-\frac{9}{17}\approx -0.529411765
k=0
Share
Copied to clipboard
k\left(34k+18\right)=0
Factor out k.
k=0 k=-\frac{9}{17}
To find equation solutions, solve k=0 and 34k+18=0.
34k^{2}+18k=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-18±\sqrt{18^{2}}}{2\times 34}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 34 for a, 18 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-18±18}{2\times 34}
Take the square root of 18^{2}.
k=\frac{-18±18}{68}
Multiply 2 times 34.
k=\frac{0}{68}
Now solve the equation k=\frac{-18±18}{68} when ± is plus. Add -18 to 18.
k=0
Divide 0 by 68.
k=-\frac{36}{68}
Now solve the equation k=\frac{-18±18}{68} when ± is minus. Subtract 18 from -18.
k=-\frac{9}{17}
Reduce the fraction \frac{-36}{68} to lowest terms by extracting and canceling out 4.
k=0 k=-\frac{9}{17}
The equation is now solved.
34k^{2}+18k=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{34k^{2}+18k}{34}=\frac{0}{34}
Divide both sides by 34.
k^{2}+\frac{18}{34}k=\frac{0}{34}
Dividing by 34 undoes the multiplication by 34.
k^{2}+\frac{9}{17}k=\frac{0}{34}
Reduce the fraction \frac{18}{34} to lowest terms by extracting and canceling out 2.
k^{2}+\frac{9}{17}k=0
Divide 0 by 34.
k^{2}+\frac{9}{17}k+\left(\frac{9}{34}\right)^{2}=\left(\frac{9}{34}\right)^{2}
Divide \frac{9}{17}, the coefficient of the x term, by 2 to get \frac{9}{34}. Then add the square of \frac{9}{34} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{9}{17}k+\frac{81}{1156}=\frac{81}{1156}
Square \frac{9}{34} by squaring both the numerator and the denominator of the fraction.
\left(k+\frac{9}{34}\right)^{2}=\frac{81}{1156}
Factor k^{2}+\frac{9}{17}k+\frac{81}{1156}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{9}{34}\right)^{2}}=\sqrt{\frac{81}{1156}}
Take the square root of both sides of the equation.
k+\frac{9}{34}=\frac{9}{34} k+\frac{9}{34}=-\frac{9}{34}
Simplify.
k=0 k=-\frac{9}{17}
Subtract \frac{9}{34} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}