Solve for x
x=\frac{7\sqrt{415714821}}{22525}+\frac{8281}{1325}\approx 12.586042211
x=-\frac{7\sqrt{415714821}}{22525}+\frac{8281}{1325}\approx -0.08641957
Graph
Share
Copied to clipboard
34\times 1000\times 9.8x+\frac{1}{2}\times 34\times 10^{3}\times \frac{100}{34^{2}}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Calculate 10 to the power of 3 and get 1000.
34000\times 9.8x+\frac{1}{2}\times 34\times 10^{3}\times \frac{100}{34^{2}}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply 34 and 1000 to get 34000.
333200x+\frac{1}{2}\times 34\times 10^{3}\times \frac{100}{34^{2}}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply 34000 and 9.8 to get 333200.
333200x+17\times 10^{3}\times \frac{100}{34^{2}}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply \frac{1}{2} and 34 to get 17.
333200x+17\times 1000\times \frac{100}{34^{2}}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Calculate 10 to the power of 3 and get 1000.
333200x+17000\times \frac{100}{34^{2}}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply 17 and 1000 to get 17000.
333200x+17000\times \frac{100}{1156}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Calculate 34 to the power of 2 and get 1156.
333200x+17000\times \frac{25}{289}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Reduce the fraction \frac{100}{1156} to lowest terms by extracting and canceling out 4.
333200x+\frac{25000}{17}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply 17000 and \frac{25}{289} to get \frac{25000}{17}.
333200x+\frac{50000}{17}\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply \frac{25000}{17} and 2 to get \frac{50000}{17}.
333200x+\frac{490000}{17}=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply \frac{50000}{17} and 9.8 to get \frac{490000}{17}.
333200x+\frac{490000}{17}=200\times 9.8x+2.65\times 10^{4}x^{2}
Multiply 2 and 100 to get 200.
333200x+\frac{490000}{17}=1960x+2.65\times 10^{4}x^{2}
Multiply 200 and 9.8 to get 1960.
333200x+\frac{490000}{17}=1960x+2.65\times 10000x^{2}
Calculate 10 to the power of 4 and get 10000.
333200x+\frac{490000}{17}=1960x+26500x^{2}
Multiply 2.65 and 10000 to get 26500.
333200x+\frac{490000}{17}-1960x=26500x^{2}
Subtract 1960x from both sides.
331240x+\frac{490000}{17}=26500x^{2}
Combine 333200x and -1960x to get 331240x.
331240x+\frac{490000}{17}-26500x^{2}=0
Subtract 26500x^{2} from both sides.
-26500x^{2}+331240x+\frac{490000}{17}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-331240±\sqrt{331240^{2}-4\left(-26500\right)\times \frac{490000}{17}}}{2\left(-26500\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -26500 for a, 331240 for b, and \frac{490000}{17} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-331240±\sqrt{109719937600-4\left(-26500\right)\times \frac{490000}{17}}}{2\left(-26500\right)}
Square 331240.
x=\frac{-331240±\sqrt{109719937600+106000\times \frac{490000}{17}}}{2\left(-26500\right)}
Multiply -4 times -26500.
x=\frac{-331240±\sqrt{109719937600+\frac{51940000000}{17}}}{2\left(-26500\right)}
Multiply 106000 times \frac{490000}{17}.
x=\frac{-331240±\sqrt{\frac{1917178939200}{17}}}{2\left(-26500\right)}
Add 109719937600 to \frac{51940000000}{17}.
x=\frac{-331240±\frac{280\sqrt{415714821}}{17}}{2\left(-26500\right)}
Take the square root of \frac{1917178939200}{17}.
x=\frac{-331240±\frac{280\sqrt{415714821}}{17}}{-53000}
Multiply 2 times -26500.
x=\frac{\frac{280\sqrt{415714821}}{17}-331240}{-53000}
Now solve the equation x=\frac{-331240±\frac{280\sqrt{415714821}}{17}}{-53000} when ± is plus. Add -331240 to \frac{280\sqrt{415714821}}{17}.
x=-\frac{7\sqrt{415714821}}{22525}+\frac{8281}{1325}
Divide -331240+\frac{280\sqrt{415714821}}{17} by -53000.
x=\frac{-\frac{280\sqrt{415714821}}{17}-331240}{-53000}
Now solve the equation x=\frac{-331240±\frac{280\sqrt{415714821}}{17}}{-53000} when ± is minus. Subtract \frac{280\sqrt{415714821}}{17} from -331240.
x=\frac{7\sqrt{415714821}}{22525}+\frac{8281}{1325}
Divide -331240-\frac{280\sqrt{415714821}}{17} by -53000.
x=-\frac{7\sqrt{415714821}}{22525}+\frac{8281}{1325} x=\frac{7\sqrt{415714821}}{22525}+\frac{8281}{1325}
The equation is now solved.
34\times 1000\times 9.8x+\frac{1}{2}\times 34\times 10^{3}\times \frac{100}{34^{2}}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Calculate 10 to the power of 3 and get 1000.
34000\times 9.8x+\frac{1}{2}\times 34\times 10^{3}\times \frac{100}{34^{2}}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply 34 and 1000 to get 34000.
333200x+\frac{1}{2}\times 34\times 10^{3}\times \frac{100}{34^{2}}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply 34000 and 9.8 to get 333200.
333200x+17\times 10^{3}\times \frac{100}{34^{2}}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply \frac{1}{2} and 34 to get 17.
333200x+17\times 1000\times \frac{100}{34^{2}}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Calculate 10 to the power of 3 and get 1000.
333200x+17000\times \frac{100}{34^{2}}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply 17 and 1000 to get 17000.
333200x+17000\times \frac{100}{1156}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Calculate 34 to the power of 2 and get 1156.
333200x+17000\times \frac{25}{289}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Reduce the fraction \frac{100}{1156} to lowest terms by extracting and canceling out 4.
333200x+\frac{25000}{17}\times 2\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply 17000 and \frac{25}{289} to get \frac{25000}{17}.
333200x+\frac{50000}{17}\times 9.8=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply \frac{25000}{17} and 2 to get \frac{50000}{17}.
333200x+\frac{490000}{17}=2\times 100\times 9.8x+2.65\times 10^{4}x^{2}
Multiply \frac{50000}{17} and 9.8 to get \frac{490000}{17}.
333200x+\frac{490000}{17}=200\times 9.8x+2.65\times 10^{4}x^{2}
Multiply 2 and 100 to get 200.
333200x+\frac{490000}{17}=1960x+2.65\times 10^{4}x^{2}
Multiply 200 and 9.8 to get 1960.
333200x+\frac{490000}{17}=1960x+2.65\times 10000x^{2}
Calculate 10 to the power of 4 and get 10000.
333200x+\frac{490000}{17}=1960x+26500x^{2}
Multiply 2.65 and 10000 to get 26500.
333200x+\frac{490000}{17}-1960x=26500x^{2}
Subtract 1960x from both sides.
331240x+\frac{490000}{17}=26500x^{2}
Combine 333200x and -1960x to get 331240x.
331240x+\frac{490000}{17}-26500x^{2}=0
Subtract 26500x^{2} from both sides.
331240x-26500x^{2}=-\frac{490000}{17}
Subtract \frac{490000}{17} from both sides. Anything subtracted from zero gives its negation.
-26500x^{2}+331240x=-\frac{490000}{17}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-26500x^{2}+331240x}{-26500}=-\frac{\frac{490000}{17}}{-26500}
Divide both sides by -26500.
x^{2}+\frac{331240}{-26500}x=-\frac{\frac{490000}{17}}{-26500}
Dividing by -26500 undoes the multiplication by -26500.
x^{2}-\frac{16562}{1325}x=-\frac{\frac{490000}{17}}{-26500}
Reduce the fraction \frac{331240}{-26500} to lowest terms by extracting and canceling out 20.
x^{2}-\frac{16562}{1325}x=\frac{980}{901}
Divide -\frac{490000}{17} by -26500.
x^{2}-\frac{16562}{1325}x+\left(-\frac{8281}{1325}\right)^{2}=\frac{980}{901}+\left(-\frac{8281}{1325}\right)^{2}
Divide -\frac{16562}{1325}, the coefficient of the x term, by 2 to get -\frac{8281}{1325}. Then add the square of -\frac{8281}{1325} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16562}{1325}x+\frac{68574961}{1755625}=\frac{980}{901}+\frac{68574961}{1755625}
Square -\frac{8281}{1325} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16562}{1325}x+\frac{68574961}{1755625}=\frac{1198236837}{29845625}
Add \frac{980}{901} to \frac{68574961}{1755625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{8281}{1325}\right)^{2}=\frac{1198236837}{29845625}
Factor x^{2}-\frac{16562}{1325}x+\frac{68574961}{1755625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8281}{1325}\right)^{2}}=\sqrt{\frac{1198236837}{29845625}}
Take the square root of both sides of the equation.
x-\frac{8281}{1325}=\frac{7\sqrt{415714821}}{22525} x-\frac{8281}{1325}=-\frac{7\sqrt{415714821}}{22525}
Simplify.
x=\frac{7\sqrt{415714821}}{22525}+\frac{8281}{1325} x=-\frac{7\sqrt{415714821}}{22525}+\frac{8281}{1325}
Add \frac{8281}{1325} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}