Evaluate
16
Factor
2^{4}
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)336}\\\end{array}
Use the 1^{st} digit 3 from dividend 336
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)336}\\\end{array}
Since 3 is less than 21, use the next digit 3 from dividend 336 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)336}\\\end{array}
Use the 2^{nd} digit 3 from dividend 336
\begin{array}{l}\phantom{21)}01\phantom{4}\\21\overline{)336}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)}12\\\end{array}
Find closest multiple of 21 to 33. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 33 to get reminder 12. Add 1 to quotient.
\begin{array}{l}\phantom{21)}01\phantom{5}\\21\overline{)336}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)}126\\\end{array}
Use the 3^{rd} digit 6 from dividend 336
\begin{array}{l}\phantom{21)}016\phantom{6}\\21\overline{)336}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)}126\\\phantom{21)}\underline{\phantom{}126\phantom{}}\\\phantom{21)999}0\\\end{array}
Find closest multiple of 21 to 126. We see that 6 \times 21 = 126 is the nearest. Now subtract 126 from 126 to get reminder 0. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }0
Since 0 is less than 21, stop the division. The reminder is 0. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}